1. Answer each of the following questions, showing all working.
(a) Rewrite the equation as $y=m x+c$:

$$
\begin{aligned}
-y+8+x & =6 y-2-10 x, \text { so } \\
-y-6 y & =-10 x-x-2-8 \\
-7 y & =-11 x-10 \\
y & =\frac{11}{7} x+\frac{10}{7}
\end{aligned}
$$

Hence the gradient is $m=\frac{11}{7}$ and the y-intercept is $c=\frac{10}{7}$.
(b) Thus the equation of the line is $y=-2 x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(6,-10)$ into this equation to get the value for c. Hence $-10=-2 \times 6+c$, so $2=c$.
Hence the equation of the line is $y=-2 x+2$.
(c) Let $\left(x_{1}, y_{1}\right)=(-9,-4)$ and $\left(x_{2}, y_{2}\right)=(6,-1)$. To find the equation of the line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ you must find the gradient m and the y-intercept c.
Then $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-(-4)}{6-(-9)}=\frac{3}{15}$. Hence $m=\frac{1}{5}$.
Thus the equation of the line is $y=\frac{1}{5} x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=$ $(-9,-4)$ into this equation to get the value for c.
Hence $-4=\frac{1}{5} \times(-9)+c$, so $-4=-\frac{9}{5}+c$. Hence $c=-4-\left(-\frac{9}{5}\right)=-\frac{11}{5}$.
Hence the equation of the line is $y=\frac{1}{5} x-\frac{11}{5}$.
(d) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
11 y-2 x-5 & =-10+10 y, \text { so } \\
11 y-10 y & =2 x-10+5 \\
y & =2 x-5
\end{aligned}
$$

Hence, the gradient of the original line is $m=2$.
The new line is parallel to the original line, so it has the same gradient as the original line. Thus the equation of the line is $y=2 x+c$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=(8,15)$ into this equation to get the value for c.
$15=2 \times 8+c$, so $15=16+c$. Hence $c=15-16=-1$.
Hence the equation of the line is $\quad y=2 x-1$.
(e) The original line has an infinite gradient; it is vertical and parallel to the y-axis. Therefore the new line is vertical and has the form $x=c$, where c is a constant.
The point $(-7,1)$ lies on the new line, so the equation of the new line is $\quad x=-7$.
(f) To find the equation of the new line, we first need the gradient of the original line. Now,

$$
\begin{aligned}
16 x+56 & =8 y, \text { so } \\
-8 y & =-16 x-56 \\
y & =2 x+7
\end{aligned}
$$

Hence the gradient of the original line is $m_{0}=2$.
The new line is perpendicular to the original line, so the new line has gradient $m=-\frac{1}{m_{0}}$. Hence $m=-\frac{1}{2}$.
Thus the equation of the line is $\quad y=-\frac{1}{2} x+c \quad$ and we can substitute the coordinates of the point $\left(x_{1}, y_{1}\right)=$ $(20,-11)$ into this equation to get the value of c :
$-11=-\frac{1}{2} \times 20+c$, so $-11=-10+c$. Hence $c=-11-(-10)=-1$.
Hence the equation of the line is $\quad y=-\frac{1}{2} x-1$.
(g) To determine whether the given line passes through the point $\left(x_{1}, y_{1}\right)=(-6,4)$, we need to substitute the coordinates of the point into the equation of the line. Now,

$$
\begin{aligned}
& 0=80+24 x-8 y, \text { so } \\
& 0=80+24 \times(-6)-8 \times 4 \\
& 0=80-144-32 \\
& 0=-96
\end{aligned}
$$

The last statement is not true, so our line does not pass through the point $(-6,4)$.
(h) Let $\left(x_{1}, y_{1}\right)=(\sqrt{20},-6)$ and $\left(x_{2}, y_{2}\right)=(\sqrt{5},-6)$. Then $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$, so
$d=\sqrt{(\sqrt{20}-\sqrt{5})^{2}+(-6-(-6))^{2}}=\sqrt{(\sqrt{4 \times 5}-\sqrt{5})^{2}+0^{2}}$
$=\sqrt{(2 \sqrt{5}-\sqrt{5})^{2}+0^{2}}=\sqrt{5+0}=\sqrt{5}$.
Hence $d=\sqrt{5}$
2. (a) First we rearrange the equation to get $y=-3$. The line $y=-3$ has constant y-value. Hence, the y-intercept is $y=-3$.
(b) For the line $y=-3$, regardless of the value of x, y is -3 . Hence, the line does not intercept the x-axis at all and there is no x-intercept.
(c) (Note that the scaling of the axes on the graph below are not equal.)

3. (a) We need to find a solution for two simultaneous linear equations.

First we number the equations for convenience:

$$
\begin{array}{r}
14 x+8 y=-168 \\
-5 x-3 y=61 \tag{2}
\end{array}
$$

It's probably easier to solve these using elimination. Multiply equation (1) by 3 and equation (2) by 8 , giving

$$
\begin{align*}
& 42 x+24 y=-504 \tag{3}\\
& -40 x-24 y=488 \tag{4}
\end{align*}
$$

We add both sides of equations (3) and (4), giving

$$
\begin{equation*}
-40 x+42 x-24 y+24 y=488-504 \tag{5}
\end{equation*}
$$

Simplifying equation (5) gives

$$
\begin{array}{r}
2 x=-16 \\
x=-8 \tag{7}
\end{array}
$$

Next we substitute the value for x into equation (1) to obtain the value for y, giving

$$
\begin{aligned}
14 \times(-8)+8 y & =-168 \\
8 y & =-56 \\
y & =-7
\end{aligned}
$$

Hence the simultaneous solution to equations (1) and (2) is $(-8,-7)$.
(As good boys and girls always do, check your answers by substituting into equations (1) and (2):

$$
\begin{aligned}
& \text { (1) } 14 \times(-8)+8 \times(-7)=-168 \\
& -112-56=-168 \\
& -168=-168 \\
& \text { (2) }-5 \times(-8)-3 \times(-7)=61 \\
& 40+21=61 \\
& 61=61
\end{aligned}
$$

Both equations turned into true statements, as required. Hence the answer is correct.)
(b) We need to find a solution for two simultaneous linear equations.

First we number the equations for convenience:

$$
\begin{array}{r}
81 x=-63+9 y \\
-90 x-70+10 y=0 \tag{2}
\end{array}
$$

We solve these using substitution. Rearranging equation (2) with y on the left-hand side gives

$$
\begin{equation*}
10 y=90 x+70 \tag{3}
\end{equation*}
$$

Dividing both sides of (3) by 10 , gives

$$
\begin{equation*}
y=9 x+7 \tag{4}
\end{equation*}
$$

Substituting for y in equation (1),

$$
\begin{equation*}
81 x=-63+9 \times(9 x+7) \tag{5}
\end{equation*}
$$

Now (5) is an equation only involving x which gives:

$$
\begin{aligned}
81 x & =-63+81 x+63 \\
0 & =0
\end{aligned}
$$

This statement is always true, so there is an infinite number of solutions to our simultaneous equations. The lines are superimposed.
4. Let $g=$ goal and $b=$ behind. North Melbourne's equation is $15 g+14 b=104$ while Melbourne's equation is $12 g+6 b=78$. We could use substitution or elimination to solve for g and b. Elimination is probably easier so let's do that first.
$15 g+14 b=104$ (1)
$12 g+6 b=78(2)$
(1) $\times 3$
$45 g+42 b=312(3)$
(2) $\times 7$
$84 g+42 b=546(4)$
(4) $-(3)$
$39 g=234 \Rightarrow g=6 \Rightarrow b=1$
So a goal is worth 6 points and a behind 1. Check this by substituting these values into the original equations.
The numbers in Melbourne's equation are all multiples of 6 , so substitution would be pretty quick.
Divide $12 g+6 b=78$ by 6 and you get $2 g+b=13$. This means $b=13-2 g$. Substitute this into North Melbourne's equation and you get $15 g+14 \times(13-2 g)=104$
So $15 g+182-28 g=104$
So $-13 g=104-182$
So $g=6$
5. Any method is fine provided working is shown. No working but correct answer is only worth 1 mark. The answer is 3 diamonds.

