1.

(a) $-5 z(-6+2 z)=-6 \times(-5 z)+2 z \times(-5 z)=30 z-10 z^{2}$
(b) $(-6+7 x)(3-6 x)=-6 \times 3-6 \times(-6 x)+7 x \times 3+7 x \times(-6 x)=-18+36 x+21 x-42 x^{2}=-42 x^{2}+57 x-18$
(c) Substituting for z into the equation gives $2=4 x-3$, so $4 x=2+3$, so $4 x=5$, so $\frac{4 x}{4}=\frac{5}{4}$

Hence $x=\frac{5}{4}$
(d) $-4 x-6=0$, so $-4 x=6$, so $\frac{-4 x}{-4}=\frac{6}{-4}$

Hence $x=-\frac{3}{2}$
(e) $\frac{-4 x}{2}-6=2$, so $-2 x=2+6$, so $-2 x=8$, so $\frac{-2 x}{-2}=\frac{8}{-2}$

Hence solution is: $x=-4$
(f) $-4+\frac{-4}{-4 x}=2$, so $\frac{1}{x}=4+2$, so $\frac{1}{x}=6$, so $1=6 x$, so $x=\frac{1}{6}$

Hence solution is: $x=\frac{1}{6}$
(g)

$$
\begin{aligned}
\frac{-11}{3} \times \frac{13}{5} & =\frac{-11 \times 13}{3 \times 5} \\
& =\frac{-143}{15} \\
& =-9 \frac{8}{15}
\end{aligned}
$$

Hence solution is: $z=-9 \frac{8}{15}$
(h) $6=4 z+4$, so $6-4=4 z$, so $2=4 z$, so $\frac{2}{4}=\frac{4 z}{4}$

Hence $z=\frac{1}{2}$
(i) $|5 x+5|=1$, so

$$
\begin{array}{lll}
5 x+5=1 & \text { or } & 5 x+5=-1 \\
5 x=1-5 & 5 x=-1-5 \\
5 x=-4 & 5 x=-6 \\
\frac{5 x}{5}=\frac{-4}{5} & \frac{5 x}{5}=\frac{-6}{5}
\end{array}
$$

Hence the solutions are: $x=-\frac{4}{5}$ and $x=-\frac{6}{5}$
(j) Since the two integers are consecutive, we know that there is a difference of one between them. Let the smaller integer be represented by n, so the larger integer will then be $(n+1)$. We then have:

$$
\begin{aligned}
& n+(n+1)=15 \\
& \Longrightarrow \quad 2 \times n+1=15 \\
& \Longrightarrow \quad 2 \times n=14 \\
& \Longrightarrow \quad n=7
\end{aligned}
$$

Note that this gives us the value of the lower integer only! We need both integers! So if the smaller number is 7 , then the larger number must be 8 .
(k) $\sqrt{128 x}=4 \sqrt{8}$, so $\sqrt{128 x}=\sqrt{4 \times 4 \times 8}=\sqrt{128}$, so $128 x=128$. Hence $x=1$
(l) $\sqrt{45}=x \sqrt{5}$. Now $\sqrt{45}=\sqrt{9 \times 5}=\sqrt{3 \times 3 \times 5}=3 \sqrt{5}$. Hence $x=3$
(m)

$$
\begin{aligned}
\sqrt{2}(\sqrt{5}+\sqrt{4}) & =\sqrt{2} \times \sqrt{5}+\sqrt{2} \times \sqrt{4} \\
& =\sqrt{2 \times 5}+\sqrt{2 \times 4} \\
& =\sqrt{10}+\sqrt{8} \\
& =\sqrt{10}+2 \sqrt{2}
\end{aligned}
$$

(n)

$$
\begin{aligned}
(\sqrt{6}+\sqrt{6})(\sqrt{8}+\sqrt{6}) & =\sqrt{6} \times \sqrt{8}+\sqrt{6} \times \sqrt{6}+\sqrt{6} \times \sqrt{8}+\sqrt{6} \times \sqrt{6} \\
& =\sqrt{6 \times 8}+\sqrt{6 \times 6}+\sqrt{6 \times 8}+\sqrt{6 \times 6} \\
& =\sqrt{48}+6+\sqrt{48}+6 \\
& =4 \sqrt{3}+6+4 \sqrt{3}+6 \\
& =6+6+4 \sqrt{3}+4 \sqrt{3} \\
& =12+8 \sqrt{3}
\end{aligned}
$$

2.

(a)

$$
\begin{aligned}
y^{-2} y^{-3} x^{2} y^{-3} \div x^{-1} \times y^{-2} & =y^{-2} y^{-3} x^{2} y^{-3} \times x^{1} \times y^{-2} \\
& =x^{2} x^{1} y^{-2} y^{-3} y^{-3} y^{-2} \\
& =x^{2+1} y^{-2-3-3-2} \\
& =x^{3} y^{-10}
\end{aligned}
$$

(b) $\frac{-5 y^{4} y^{4}}{y^{-3} y^{-5}}=\frac{-5 y^{4+4}}{y^{-3-5}}=\frac{-5 y^{8}}{y^{-8}}=-5 y^{8-(-8)}=-5 y^{16}$
3.
(a) In interval form the answer is $(-\infty, 6.6)$ and on a real line the answer is:

(b) In inequality form the answer is $9 \leq x<11$ and on a real line the answer is:

(c)

$$
\begin{aligned}
8 x-6 & \geq 4 x-10 \\
8 x-6+6 & \geq 4 x-10+6 \\
8 x & \geq 4 x-4 \\
8 x-4 x & \geq 4 x-4 x-4 \\
4 x & \geq-4 \\
4 x \div 4 & \geq-4 \div 4 \\
x & \geq-1
\end{aligned}
$$

In interval format the answer is $[-1, \infty)$, and on a real line the answer is:

4. Mayumi ate x pieces of sushi. Rumi ate 4 more, so $x+4$.

So, $x+x+4=26$
$2 x=22$
$x=11$

So Mayumi ate 11 pieces and Rumi ate $11+4=15$ pieces (check: $11+15=26$)
5. Let the first hospital have x doctors. The second hospital therefore has $3 x-20$ doctors.

So, $x+3 x-20=204$
$4 x=224$
$x=56$
So the first hospital has 56 doctors and the second hospital has $56+3 \times 56-20=148$. (check: $56+148=204$)
6. $\left(\left(x+x^{2}\right) \div x-16-x\right) \div 3=\left(\frac{x+x^{2}}{x}-16-x\right) \div 3$
$=\left(\frac{x(1+x)}{x}-16-x\right) \div 3$
$=(1+x-16-x) \div 3$
$=-15 \div 3$
$=-5$
The x 's disappear, so regardless of what number x is the answer is always -5 .

