MATH1040/7040 Semester 1, 2011

Week 10 Tutorial Solutions

- 1. (a) $y = e^{7x}$, which is a graph of exponential growth. Hence the matching graph is Graph K.
 - (b) $-8y + 9x^2 = -16y + 15x^2$, so $8y = 6x^2$. This equation includes an x^2 term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the *y*-intercept is 0. Hence the matching graph is Graph P.
 - (c) -13y + 9 = -3y 15, so -10y = -24, so $y = \frac{24}{10}$. Hence this is a horizontal line, with y positive. Hence the matching graph is Graph C.
 - (d) -8y + 12x = -6y + 14x, so 2y = -2x. Hence this is a straight line, with negative gradient and passing through the origin. Hence the matching graph is Graph I.
 - (e) 3x 13 = -7x + 3, so 10x = 16, so $x = \frac{16}{10}$. Hence this is a vertical line, with x positive. Hence the matching graph is Graph B.
 - (f) $-3y + 9x^2 14 = 6x^2 15$, so $3y = 3x^2 + 1$. This equation includes an x^2 term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the *y*-intercept is positive. Hence the matching graph is Graph O.
 - (g) -2y 2x + 11 = 13y 6x + 11, so 15y = 4x. Hence this is a straight line, with positive gradient and passing through the origin. Hence the matching graph is Graph F.
 - (h) $y = e^{-3x}$, which is a graph of exponential decay. Hence the matching graph is Graph L.
- 2. Given an angle a in degrees, to convert a to radians you divide by 180 and multiply by π . Hence the converted angles are:

 $\frac{11\pi}{10} \quad \frac{9\pi}{20} \quad \frac{\pi}{2} \quad -\frac{7\pi}{12} \quad \frac{5\pi}{2} \quad \frac{\pi}{15} \quad -\frac{16\pi}{9} \quad \frac{7\pi}{3}$

3. Given an angle a in radians, to convert a to degrees you multiply by 180 and divide by π . Hence the converted angles are:

 $-198^{\circ} - 300^{\circ} 300^{\circ} 126^{\circ} 30^{\circ} 720^{\circ} 1080^{\circ} 468^{\circ}$

4. A ladder is placed up against a wall at an angle of elevation of 30° . If the ladder is 2m away from the base of the wall, how long is it? How far up the wall does the ladder reach?

Let x be the length of the ladder. Then $\cos 30^\circ = \frac{2}{x}$, so $x = \frac{2}{\cos 30^\circ} \approx 2.31$ m. Let y be the distance the ladder reaches up the wall. Then $\tan 30^\circ = \frac{y}{2}$, so $y = 2\sin 30^\circ \approx 1.15$ m.

1

5. (a) The roots of $y = 4x^2 + 36x$ are the x values that satisfy $4x^2 + 36x = 0$. You can solve this equation either by using the quadratic formula or by factoring. Here we will use factoring.

First divide through by 4 to get $x^2 + 9x = 0$. Now because $x^2 + 9x = (x + 9)x$, the two roots of the quadratic equation are x = -9, 0.

(b) The y-intercept occurs when x = 0, so substituting this into $y = 4x^2 + 36x$ gives y = 0.

(c)

