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1 Numbers and arithmetic

This material is fundamental to all the maths you will do in MATH1040, and in many courses

you’ll take at University. It’s even useful in everyday life! Some of you will be quite familiar

with this material, but many others will not. If you can’t do this stuff, you will be unable to do

the harder and more interesting things later in the course.

Topics in this section are

• Thinking about Maths.

• Types of numbers.

• Number lines and order.

• Absolute values.

• Simple mathematical operations.

• Order of operations.

• Introduction to exponentiation.

• Square roots.

• Prime numbers and factors.

• Fractions.

1.1 Thinking about Maths

Mathematics is often not easy, but it’s important! You will encounter some sort of maths almost

every day of your life. Most people need to think quite hard when doing maths, but there are

some skills and tricks that really help. Two important approaches you must learn to use are

estimating and checking your answers.

Most questions in maths have one correct final answer, but many different ways of getting that

answer. Usually, you can use any valid method you like to get the answer, although sometimes

you may be asked to use a particular method. It’s important that you show the steps you take,

as many marks will usually be allocated to your working.
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Often before (or instead of) solving a maths problem exactly, it’s useful to quickly estimate

a rough answer. You can do this by approximating some of the numbers, thus simplifying the

calculations. Your answer will not be exactly correct, but it should be “close” to the real answer.

The context of the question will determine how accurate you need to be. Sometimes it’s good

enough to be quite rough.

Example 1.1.1 Peter works 36.25 hours per week, and earns $32.6174 per hour.

Estimate his weekly income.

Answer: The key word here is estimate. We just need a rough figure, so we can round

Peter’s working hours to 40 hours per week, and his hourly wage to $30 per hour,

giving us an easy calculation we can do in our head: 40 × 30 = $1200.

For reference, the exact answer is $1182.38. Note that we rounded the number of hours up, and

the hourly pay-rate was rounded down; this helped to increase the accuracy of the estimate.

Be careful how you use estimation. In most cases, problems need exact answers. Estimation

can be used to check whether or not your final answer is reasonable, but shouldn’t be used to

find the actual answer.

It’s easy to make mistakes when answering a question. Whenever possible, you should check

your answer. There are many ways of doing this. The list below outlines a few strategies that

you can use to check your answers.

• Where appropriate, ask yourself: ‘Does the answer make sense in a real-life context’?

• Use estimation to check whether the answer is ‘plausible’.

• Check each of the steps in your working.

It is important that you exercise caution while checking solutions. Also, don’t readily trust

your calculator - it does exactly what you tell it to do and it is very easy to input something

incorrectly.

It is also very important that you are able to interpret and understand all of the different mathematical

symbols and notations used within the course. Taking the time to develop a thorough understanding
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of notation will be essential in comprehending the more complex material that arises as the

course progresses.

Questions

1. For each question, decide which answer(s) are most likely to be correct. Explain why.

(1) In an Olympic 400m running race, the maximum speed attained by the winner (in

metres per second) is:

i. 63.7 ii. 10 iii. 2

(2) $1000 is invested in a bank account earning 8% interest per annum for 3 years. What

is the final balance?

i. $16728.33 ii. $827.67 iii. $1259.71 iv. $1412.68

2. One Australian dollar (AUD) is worth 0.878 United States dollars (USD). Big Bad John

spends 10 nights at a hotel in Las Vegas, at 93 USD per night. His credit card company

charges a 1.5% fee to convert from USD to AUD. Roughly estimate his bill in AUD.

3. Roughly estimate the number of babies born in Australia each year.

This section might seem easy, but it’s so important that we covered it first. For the rest of this

course (and others), make sure you use estimation where appropriate, and always check your

answers.

1.2 Types of numbers

Numbers are one of the most fundamental concepts in human existence, and underpin almost

everything you see and do. It is necessary that we distinguish carefully the various kinds of

numbers. The simplest numbers are the “counting numbers”

1, 2, 3, . . .
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These positive whole numbers are called the natural numbers, the symbol for which is N.

Because of their simple nature, there are limited applications of the natural numbers. These

deficiencies can be partially overcome by extending this system to include the negative whole

numbers and zero (0). This collection of numbers is referred to as the integers, the symbol for

which is Z, and contains all positive and negative whole numbers and zero, but does not include

any decimals.

. . . , −2, −1, 0, 1, 2, . . .

The next extension is obtained by taking quotients, m
n

, of integers, meaning we have a fraction

where both m and n are integers and n is not zero. These numbers are called rational

numbers, and the set of all rational numbers is denoted by Q. Rational numbers can be written

as common fractions or as decimal fractions which either

• terminate, for example, 1
4

= 0.25 and −7
5

= 7
−5

= −7
5

= −1.4 or

• recur, for example, 1
3

= 0.3333 . . . = 0.3̇ and 8
11

= 0.72727272 . . . = 0.7̇2̇.

It is important to understand that the rational numbers include the integers. This is because each

integer can also be written as a quotient of integers, for example 3 = 3
1

= 9
3
. Note that zero

can be written in this form, i.e., 0 = 0
1

= 0
−23

, but dividing by zero is undefined.

There are also numbers that cannot be written as a quotient of integers but can be represented

as decimals that neither terminate nor repeat. These numbers are called irrational numbers,

denoted Q̄, and together with the rational numbers form the set of real numbers, denoted R.

Some examples of irrational numbers are
√

2 = 1.4142 . . ., π = 3.1415 . . . The decimal

representations of these numbers have no pattern and continue for ever. Every year on Pi Day

(March 14 - 3rd month, 14th day), people try to remember as many digits of π as they can. (π

is the ratio between a circle’s circumference and diameter.) The current world record is 67,890

decimal places, set in 2005 by Chao Lu. He lasted 24 hours and 4 minutes before making a

mistake!
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1.3 Number lines and order

A number line (sometimes called a real line) shows the order of the real numbers. Each real

number occurs somewhere on the number line. The gaps between the integers on the number

line are completely filled by rational and irrational numbers. We can loosely think of the number

line as going from −∞ (negative infinity) on the left to∞ (infinity) on the right.

Number lines are ideal for displaying relationships between numbers. For any two numbers,

there are 5 common ways of writing the relationship between these numbers:

= : meaning equal to, for example 2 = 6
3
;

< : meaning less than, for example 1 < π;

> : meaning greater than, for example 0 > −2;

≤ : meaning less than or equal to, for example 2 ≤ 17;

≥ : meaning greater than or equal to, for example −1 ≥ −1.

2 ≥ 2, but people sometimes get confused by this. Think of it this way: if your boss tells you

can have at least two days off, this means you can have 2, 3, 4 or more days off. At least is the

same as greater than or equal to.

If we mark a number, say
√

2, an irrational number, on a number line, all numbers that are to

the right of
√

2 are ‘greater than’ or larger than
√

2,
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where as all numbers that lie to the left of
√

2 are ‘less than’ or smaller than
√

2.

1.4 Absolute values

On a number line, all numbers to the left of zero are negative, written with a− sign before them

(i.e. −3). There is a special relationship between a number and its negative: both are exactly

the same distance from 0 (in opposite directions).

Example 1.4.1 −3 and 3 are both a distance of 3 from the point 0.

3 is three steps to the right of 0, −3 is three steps to the left of 0.

Sometimes we are interested in how far the number is from 0, but we don’t care in which

direction. The absolute value of a number is its distance from zero. For any number x, we

write |x | to represent the absolute value of x. In the example above we found that | 3 | = 3

and | − 3| = 3. Note that the absolute value of a real number is always either positive or zero,

but never negative.
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Example 1.4.2 Evaluate each of the following:

(a) |−2| (b)
∣∣∣∣ 7

2

∣∣∣∣ (c) | 0 | (d) −| 5 |

Solutions:

(a) −2 is a distance of 2 from 0, so |−2| = 2.

(b) We can take the absolute value of any real number. 7
2

is a distance of 7
2

from

0, so | 7
2
| = 7

2
.

(c) 0 is a distance of 0 from 0, so | 0 | = 0.

(d) We read this as the negative of the absolute value of 5. Since | 5 | = 5 then

−| 5 | = −5.

We will see more on absolute values later in the course.

Questions

1. Evaluate each of the following:

(1) |−7.82|

(2) −|−1|

(3) |−2 + 5|
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1.5 Simple mathematical operations

You should be quite familiar with addition, multiplication, subtraction and division. What may

be unfamiliar is using these operations with mixtures of positive and negative numbers. In the

section on absolute values we talked about the relationship between a number and its negative:

both being exactly the same distance from 0, in opposite directions. What wasn’t explicitly

stated in that section was that the negative of a negative number is positive.

Example 1.5.1 Show that − (−2) = 2 using a number line.

−2 is two steps to the left of 0. This mean that the negative of −2 must be two

steps to the right of zero.

2 is two steps to the right of zero and thus − (−2) = 2.

We now outline below the rules which govern arithmetic on combinations of positive and

negative numbers:

• Adding a negative number is equivalent to subtracting that number. For example, 3 +

(−4) = 3− 4 = −1. Note that it will often be useful to use this rule to treat subtraction

as the addition of the corresponding negative number.

• Subtracting a negative number is equivalent to adding the positive of that number. For

example, 2− (−3) = 2 + (−(−3)) = 2 + 3 = 5.
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• Multiplying or dividing two numbers that are both either positive or negative will result

in a positive answer. For example, (−3)× (−2) = + (3× 2) = 6.

• Multiplying or dividing two numbers where one is positive and one is negative will result

in a negative answer. For example, (−3)× 5 = − (3× 5) = −15.

These last 2 points can be summarised in the following table. Here +ve means positive and -ve

means negative.

1st number × or ÷ 2nd number answer

+ve × or ÷ +ve +ve

+ve × or ÷ −ve −ve

−ve × or ÷ +ve −ve

−ve × or ÷ −ve +ve

Example 1.5.2 Understand each of the following:

(a) 4 + (−3) = 4− 3 = 1

(b) (−4) + 3 = −1 People often make mistakes with this type of question.

We are starting at −4 and adding 3, which means moving 3 steps to the right.

Drawing a number line is a good way to understand.

(c) 4− (−3) = 4 + 3 = 7

(d) (−4)− (−3) = (−4) + 3 = −1

(e) (−6)× 2 = − (6× 2) = −12

(f) (−6)× (−2) = + (6× 2) = 12

(g) 6÷ (−2) = − (6÷ 2) = −3

(h) (−6)÷ (−2) = + (6÷ 2) = 3
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Great care needs to be taken when performing arithmetic on expressions involving zero. When

dealing with zero remember the following:

• It is never possible to divide by zero. Dividing by zero is undefined (including 0
0
).

• Zero divided by any non-zero number equals zero; for example, 0÷ 7 = 0

• Any number multiplied by zero equals zero; for example, 0× (−7) = 0

• If two numbers multiply to give zero, then at least one of the numbers must equal zero.

We will see this last point later on in the course, so please remember it.

Questions

1. Evaluate each of the following:

(1) 2− (−3)

(2) (−5) + 7

(3) (−6) + (−3)

(4) 3× (−4)

(5) (−10)÷ (−5)

1.6 Introduction to exponentiation

It is important that you are familiar with power (or exponent) form. Exponential notation is

essentially shorthand for the repeated multiplication of a number, much in the same way as

multiplication is shorthand for the repeated addition of a number. If the number 3 is multiplied

by itself 5 times (3× 3× 3× 3× 3) we can write this in exponential form as 3 5, where 3 is

the base and 5 is called the power or exponent or index.
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For example, 4× 4 = 42 which is read as 4 squared or 4 to the power of 2;

4× 4× 4 = 43 which is read as 4 cubed or 4 to the power of 3.

Once we start dealing with powers greater than 3 we simply use “to the power of” terminology,

for example 4× 4× 4× 4× 4 = 45 is read as 4 to the power of 5.

We now want to take a closer look at exponentiation and negative numbers. Recall from

the last section that multiplying two numbers that are both negative will result in a positive

answer, and that multiplying two numbers where one is positive and one is negative will result

in a negative answer. We need to think about what this means when dealing with exponents of

negative numbers.

To investigate this further we look at the powers of −1, noting that 1 to any power is 1 (as no

matter how many times we multiply 1 by itself we always get 1).
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Example 1.6.1

(−1) 2 = (−1)× (−1)

= + (1× 1)

= 1

Notice that when squaring −1 we multiply −1 by itself, as squaring means multiplying by

itself, giving an answer of 1 .

Example 1.6.2

(−1) 3 = (−1)× (−1)× (−1)

=
(

+ (1× 1)
)
× (−1)

= 1× (−1)

= − (1× 1)

= −1

In this example we initially group and then multiply a pair of −1s to give 1, leaving one −1

unpaired. We then finish the remainder of the multiplication giving us an answer of −1 .
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Example 1.6.3

(−1) 4 = (−1)× (−1)× (−1)× (−1)

=
(

+ (1× 1)
)
×
(

+ (1× 1)
)

= 1× 1

= 1

This time we are able to pair off and then multiply all the −1s . This is because we have an

even number of −1s. After we have paired and multiplied the −1s we are simply left with

1× 1 giving us an answer of 1.

Example 1.6.4

(−1) 5 = (−1)× (−1)× (−1)× (−1)× (−1)

=
(

+ (1× 1)
)
×
(

+ (1× 1)
)
× (−1)

= 1× 1× (−1)

= 1× (−1)

= − (1× 1)

= −1

In this example we are able to pair off and then multiply all but one of the −1s . This is because

we have an odd number of −1s. In the final step of the multiplication we are left with 1×−1 ,

this results in an answer of −1.

In the above examples we noticed that when the exponent is even, the answer is positive;

and when the exponent is odd, the answer is negative. This is true for the exponentiation of

all negative numbers, not just the powers of −1. When carrying out calculations involving

exponents and negative numbers the sign of the answer is determined from the power.
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Example 1.6.5 Understand each of the following:

(a) (−2)4 = (−2)× (−2)× (−2)× (−2) = + ( 24 ) = 16

Note that 4 is an even number so the answer is positive.

(b) (−8)3 = (−8)× (−8)× (−8) = − ( 83 ) = −512

Note that 3 is an odd number so the answer is negative.

So far we have only looked at positive exponents. We will see negative exponents later in the

course.

Questions

1. Evaluate each of the following:

(1) (−1)17

(2) (−1)356

(3) (−2)3

(4) 34

1.7 Square roots

The previous section on exponentiation explained how to square numbers. The square root of

a number is a non-negative (that means positive or zero) number that when multiplied by itself

(or squared), gives the original number. For example, the square root of 4 is 2, the square root

of 25 is 5 and the square root of 0.81 is 0.9. The symbol used to denote square root is
√

, so
√

4 = 2 and
√

0.81 = 0.9. While there are two numbers which when squared give the value 4,

namely 2 and −2, only one of these is called the square root of 4, namely
√

4 = 2.

Example 1.7.1 9 = 32, so 3 =
√

9. 16 = 42, so 4 =
√

16.

√
1

4
=

1

2
, since

1

2
× 1

2
=

1

4
.
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It is easy to show that a negative number does not have a square root. Recall back in multiplication

of numbers on Page 9 we saw that a negative number can only be obtained by multiplying a

positive number and a negative number (or vice versa) together. As we saw above, the square

root of a number is a non-negative number that when multiplied by itself (or squared), gives the

original number. Positive × negative is not multiplying by itself, so therefore negative numbers

do not have square roots. (Check this on your calculator.)

• We can find the square root of numbers that are not integers. (We will see how to in the

coming chapters.)

• A square root does not have to be an integer.

• An integer whose square root does happen to be an integer is called a square number.

Example 1.7.2

• The first 11 square numbers are:

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

Questions

1. Evaluate each of the following:

(1)
√

9

(2)
√

36

(3)
√

100

(4) −
√

64

(5)
√

0.04

(6)
√

0.0009 (You may wish to use a calculator for these last two.)
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1.8 Order of operations

If we consider the expression 2 + 3 × 5, it is not clear how to arrive at the correct answer. By

adding 2 to 3 and then multiplying by 5, we get 25; by multiplying 3 by 5 and then adding 2,

we get 17. Which answer is correct? It is obvious that we need rules or a system to know in

which order to perform different operations.

The word BEDMAS can help you to remember the rules. Each letter stands for a common

mathematical operation; the order of the letters matches the order in which you should perform

the mathematical operations.

letter stands for: example

B brackets (3 + 4)

E exponentiation 34 D division 3÷ 4

M multiplication 3× 4 A addition 3 + 4

S subtraction 3− 4

• B: Look for any brackets in the expression, and evaluate inside the brackets first. If

there are brackets inside brackets, then the innermost brackets get evaluated before the

outermost ones.

• E: Next, any exponentiation must be evaluated.

• D, M: Next, evaluate divisions and multiplications. Note that even though D comes

before M in BEDMAS, they have the same priority. This means that you evaluate any

multiplication and division in the expression as they occur, working from left to right,

before moving onto the next operations. Note that the rule could also be called BEMDAS.
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• A, S: Finally, evaluate any additions or subtractions, working from left to right. Even

though A comes before S in BEDMAS, they have the same priority, just like multiplication

and division.

Example 1.8.1 Evaluate each of the following:

(a) 3 + 4× 2 (b) (3 + 4)× 2 (c) 12× 2÷ 3× 6÷ 12

(d) 2× (1 + 4× (6÷ 3)) (e) 3 + 2 (2+1) (f) 4− 22 + (−3)3

18



Solutions:

(a) 3 + 4× 2 = 3 + 8 × is evaluated first,

= 11 and then the +.

(b) (3 + 4)× 2 = 7× 2 Start with the brackets,

= 14 and then the ×.

(c) 12× 2÷ 3× 6÷ 12 = 24÷ 3× 6÷ 12 Start with the × on the left,

= 8× 6÷ 12 then evaluate the ÷,

= 48÷ 12 next the ×,

= 4 then the remaining ÷.

(d) 2× (1 + 4× (6÷ 3)) = 2× (1 + 4× 2) Innermost brackets go first,

= 2× (1 + 8) next the × in the remaining brackets,

= 2× 9 then the + in the brackets,

= 18 and finally the ×.

(e) 3 + 2 (2+1) = 3 + 2 3 Always evaluate brackets first,

= 3 + 8 next the exponent,

= 11 and then the +.

(f) 4− 22 + (−3)3 = 4− 4 + (−3)3 Start with the exponent on the left,

= 4− 4 + (−27) then the remaining exponent,

= 4− 4− 27 next simplify the brackets,

= 0− 27 then perform the − on the left,

= −27 and then the final −.
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Note that in the last example there was nothing to evaluate within brackets. The brackets were

asking us to take the exponent of −3 and not the exponent of 3. This differs to the exponent

on the left which is asking you to subtract 2 to the power of 2. Be sure that you understand

this subtle difference in the notation and how to interpret it.

Questions

1. Answer each of the following questions, showing all working:

(1) Evaluate 12÷ 4− 3 and 12÷ (4− 3)

(2) Evaluate 90÷ 6÷ 3 and 90÷ (6÷ 3)

(3) Evaluate 5× 9− 5 and 5× (9− 5)

(4) Evaluate 3× 1 + 6 and 3× (1 + 6)

(5) Evaluate 48÷ 3× 4 and 48÷ (3× 4)

2. Answer each of the following questions, showing all working:

(1) Evaluate 8÷ 4× 2

(2) Evaluate 2 + 4× 5÷ 2

(3) Evaluate 3× (1 + 2)− 2× 4

(4) Evaluate 23 − 4× 2 + (4 + 1)2

(5) Evaluate 10− 6 + 3÷ 3× 2

20



1.9 Factors and prime numbers

For any integer, we call another integer a factor of that integer if it divides exactly into that

integer. For example, 14 = 2×7 and 14 = 1×14, so the factors of 14 are 1, 2, 7 and

14. If two or more integers share the same factor, then we call that factor a common factor of

those integers.

Finding the factors of relatively small integers is generally quite simple. However, when

dealing with large integers (3 or more digits) the process becomes much more complicated.

There are some simple tricks that let us easily check for small factors of an integer. An integer

is divisible by:

2 if the last digit of the integer is even, for example, 2 is a factor of 298 as the last digit 8

is even;

3 if the sum of the digits in the integer is divisible by 3, for example, 3 is a factor of 195

as 1 + 9 + 5 = 15 which is divisible by 3;

4 if the last two digits are an integer divisible by 4, for example, 4 is a factor of 2128 as

the last two digits 28 form an integer divisible by 4;

5 if the integer ends in 0 or 5, for example, 5 is a factor of 875 as it ends in a 5;

6 if the integer is divisible by both 2 and 3, for example, 6 is a factor of 924 as the last

digit 4 is even, meaning it is divisible by 2 and 9 + 2 + 4 = 15, which is divisible by

3;

9 if the sum of the digits in the integer is divisible by 9, for example, 9 is a factor of 891

as 8 + 9 + 1 = 18 which is divisible by 9;

10 if the integer ends in 0 and has more than 1 digit, for example, 10 is a factor of 510 as

it ends in 0.
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A prime number is a natural number whose only factors are 1 and itself. The first 7 prime

numbers are 2, 3, 5, 7,

11, 13 and 17. Since all even numbers are divisible by 2, the number 2 is the only even

prime number. By convention, 1 is not considered to be a prime number. Any natural number

larger than 1 is either prime, or can be written as a product of prime factors.

To write a number as a product of prime factors we can do the following:

• If the number is even, we divide the number by 2 (the first prime number) repeatedly until

the resulting number is no longer divisible by 2. If you were able to divide by two, n

times, then 2n must be a factor of the original number. For example,

48÷ 2 = 24

24÷ 2 = 12

12÷ 2 = 6

6÷ 2 = 3

3 is no longer divisible by 2 and we were able to divide 48 by 2 four times. This means

that 2 4 = 2× 2× 2× 2 is a factor of 48.

• Once we are unable to divide the number by 2 we check if the resulting number is prime.

If it is, then we have completed the process. In the above example when we were no

longer able to divide by 2 our resulting number was 3. 3 is a prime number so we have

finished the process and can write 48 as a product of prime factors

48 = 2× 2× 2× 2× 3 = 2 4 × 3

If the number is not prime, we repeat the above process with each successive prime

number until the resulting number is a prime. This means we replace 2 with 3, and then

3 with 5, and then 5 with 7, etc. using the process above until the resultant number is

prime.
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Example 1.9.1 Write 700 as a product of prime factors.

So writing 700 as a product of primes, 2× 2× 5× 5× 7 = 2 2 × 5 2 × 7 = 700.

Questions

1. Answer each of the following questions, showing all working:

(1) Is 14 a prime number? Why?

(2) Is 58 a prime number? Why?

(3) Is 15 a prime number? Why?

(4) Is 19 a prime number? Why?

(5) Is 8 a prime number? Why?

(6) Is 97 a prime number? Why?
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2. Write each of the following as the product of prime factors (if it’s not already prime):

(1) 12

(2) 31

(3) 48

1.10 Fractions: Multiplication and Division

We saw fractions at the beginning of this chapter when we introduced rational numbers. A

fraction is the ratio of an integer and a non-zero integer, such as: 1
2

= 1÷ 2, 11
3

= 11÷ 3,

and −3
4

= (−3) ÷ 4 or equally 3 ÷ (−4). In a fraction we call the number on the top the

numerator, and the number on the bottom the denominator.

Fractions are everywhere in life, for example, recipes, measurements and medicines, but working

with them can be more challenging than working with integers. Evaluating 2 + 3 is easy but

how do we evaluate 1
2

+ 3
4

or 2
3
× 1

8
? Let’s start with multiplication of fractions as that is the

easiest operation.

To multiply two fractions, we use the product of their numerators as the numerator of the result,

and the product of their denominators as the denominator of the result. In other words, we

simply multiply the two numbers on the top together to determine the numerator of the answer,

and multiply the two numbers on the bottom to determine the denominator of the answer.

Example 1.10.1
2

3
× 1

5
=

2× 1

3× 5
=

2

15

In order to be able to divide fractions we must introduce inverses (or reciprocals). The inverse

(or reciprocal) of a number is a number which you multiply the original number by to get an
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answer of 1. To obtain the inverse of a fraction you invert (or flip) the fraction. We can show

this is true by multiplying two such fractions to obtain an answer of 1.

Example 1.10.2

2

3
× 3

2
=

2× 3

3× 2
=

6

6
= 1

To divide two fractions, we multiply the first fraction in the expression by the inverse of

the fraction after the division sign. In other words, we change the operation from division to

multiplication and invert (or flip) the fraction we are dividing by.

Example 1.10.3
3

4
÷ 1

8
=

3

4
×8

1
=

3× 8

4× 1
=

24

4
= 6

We call two fractions equivalent fractions if they are represented by the same point on the

number line. Some examples of equivalent fractions are: 1
2
, 3

6
, 4

8
, 19

38
. For any fraction,

we can obtain an equivalent fraction by multiplying (or dividing) both the numerator and

denominator by the same number. The two fractions remain equal because multiplying both

the numerator and denominator by the same number is equivalent to multiplying the original

fraction by 1 (and dividing both the numerator and denominator by the same number is equivalent

to dividing the original fraction by 1). Note that any fraction of the form n
n

is equal to 1 (where

both the n’s are the same number and not zero).

Example 1.10.4
1

2
=

1

2
× 1 =

1

2
× 3

3
=

1× 3

2× 3
=

3

6
.

In this example, we have chosen to multiply the numerator and denominator by 3, but

we could have chosen any non-zero number and still had a fraction equivalent to 1
2
.

For example,

1

2
=

1

2
× 1 =

1

2
× 4

4
=

1× 4

2× 4
=

4

8
.
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When we obtain an answer that is a fraction, we need to check whether this fraction is in its

simplest form. When a fraction is written in its simplest form, or lowest terms, the numerator

and the denominator of the fraction have no common factors other than 1. This is done by

identifying and then cancelling common factors of both the numerator and the denominator.

To cancel a factor we divide the numerator and the denominator by the common factor; this

eliminates it from the fraction without changing the numerical value of the fraction.

An effective method to find a fraction’s simplest form is to first factorise both the numerator

and denominator into primes (see Section 1.7) and then cancel primes factors common to both

the numerator and the denominator.

Example 1.10.5 Consider the fraction
28

42
. Now 28 = 2×2×7 and 42 = 2×3×7,

so the prime factors common to the numerator and denominator are 2 and 7. To write

this fraction in its simplest form we need to cancel these prime factors.

28

42
=

28÷ 2

42÷ 2
=

14

21
=

14÷ 7

21÷ 7
=

2

3

An alternate and equivalent method, is to first identify and then cancel the highest common

factor of both the numerator and denominator. This method is generally less efficient and leaves

more margin for error then factorising into primes, but is often quicker when dealing with

relatively small numbers.

Example 1.10.6 If we can quickly identify that 14 is the highest common factor

of the numerator and denominator in the example above, then we can do the following:

28

42
=

28÷ 14

42÷ 14
=

2

3

The process of converting fractions to their simplest form is called reducing to the lowest

denominator. To get full marks for your answers, you must always write fractions in their

simplest form.
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Sometimes you may see a question asking you to multiply an integer and a fraction, for example,

5 × 2

3
. This often confuses students but it’s not hard. We saw in the first part of this chapter

that an integer can be written as a rational number by placing it in a fraction over 1. So 5 =
5

1
,

making our question
5

1
× 2

3
which we can do.

You may have seen fractions written as mixed numbers (i.e. 3 1
2
) in the past, but in this course

(and in the majority of maths courses at university) we will avoid such representations and write

3 1
2

as 7
2
. It is easy to convert from one representation to another. For example, 3 1

2
is made up

of 3 wholes and one half. In each whole there are two halves, so there are six halves in three

wholes. Adding the initial one half gives us seven halves or 7
2
. To go the other way, we divide 7

by 2. 2 doesn’t go evenly into 7, but we have 3 × 2 which is 6, so that’s three wholes, then we

need one more half to get to 7, so we have 3 1
2
.

Questions

1. Answer each of the following questions, showing all working:

(1) Find
0

−16
× −1

−1

(2) Find
−8

−7
× 14

12

(3) Find
1

17
× 3

3

(4) Find
−13

11
× −13

16

(5) Find
7

8
× −4

3

(6) Find
−3

4
÷ 4

10

(7) Find
−10

11
÷ 16

−6

(8) Find
7

17
÷ 7

1

(9) Find
7

4
÷ 8

−12

(10) Find
11

2
÷ 5

−2
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1.11 Fractions: Addition and subtraction

If two or more fractions have the same denominator then they are said to have a common

denominator. To add (or subtract) fractions with common denominators, we add (or subtract)

just the numerators and place the result above the common denominator.

Example 1.11.1

13

32
+

7

32
− 4

32
=

13 + 7− 4

32
=

16

32
=

1

2

To add (or subtract) fractions without common denominators, we must convert each of the

fractions to equivalent fractions so that the fractions we are adding (or subtracting) have

common denominators. Once the fractions have common denominators we can proceed using

the rule above. Consider a simple example of adding a half to a third, i.e. 1
2

+ 1
3

.

It’s clear the answer should be reasonably close to one, but what is the exact answer? If we

rewrite the fractions into equivalent fractions with a common denominator; that is make it so

that the fractions are in the same size pieces so we can easily compare (and count) them, the

answer becomes much more obvious.
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Example 1.11.2

1

2
+

1

3
=

1× 3

2× 3
+

1× 2

3× 2

=
3

6
+

2

6

=
3 + 2

6

=
5

6

If we have two fractions to add (or subtract), the simplest common denominator to use is the

product of the two denominators. For instance, to evaluate 2
5
− 7

8
, we could use a common

denominator of 5× 8 = 40.

Example 1.11.3

2

5
− 7

8
=

2× 8

5× 8
− 7× 5

8× 5

=
16

40
− 35

40

= −19

40

A fraction is an interesting number in that it contains two numbers, one number on the top (the

numerator), and one number on the bottom (the denominator). We need to be very careful when

working with fractions. Although a fraction does contains two numbers it is in fact just one

number and needs to be treated accordingly.
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It is very important that you add and subtract fractions correctly. A very common error people

make when adding (or subtracting) fractions is to add (or subtract) the denominators. Let’s

consider an easy example and add two halves. As we saw above 1
2

+ 1
2

= 1+1
2

= 2
2

= 1,

and this appears logical if we represent the addition visually.

If we were to make an error and perform the addition incorrectly and add the denominators

together as well as adding the numerators, i.e. 1
2

+ 1
2

= 1+1
2+2

= 2
4

= 1
2
, the visual

representation as well as the answer make absolutely no sense.

From the diagram it’s quite apparent that adding fractions in this way is incorrect and that we

need to be careful not to add denominators together.

Although the majority of calculations involving fractions are generally straightforward, they

can become troublesome when numerators and denominators include letters and mathematical

expressions (as you will see later in the course). Fractions are used quite a lot in this course, so

take the time now to practise on some examples.
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Questions

1. Answer each of the following questions, showing all working:

(1) Find
7

2
+
−8

5

(2) Find
13

18
+

6

17

(3) Find
0

14
+
−4

−6

(4) Find
14

8
+

15

8

(5) Find
−9

14
+
−3

13

(6) Find
1

3
− −3

7

(7) Find
8

3
− 2

15

(8) Find
−9

−4
− −1

9

(9) Find
−14

10
− 12

8

(10) Find
13

12
− −8

20

2. Answer each of the following questions, showing all working. Remember to apply

BEDMAS.

(1) Find
0

4
÷ −35

18
+

53

−38
− −7

−38

(2) Find
4

−1
− 1

−15
+
−1

15
+
−8

13

(3) Find
−8

6
÷ 56

−29
÷ 58

27
÷ 36

38

(4) Find
6

−8
× −45

−12
+
−60

−16
− −36

−48

(5) Find
(
−8

8
− −60

56

)
× −3

6
− −18

−14
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3. There are some very common errors when dealing with fractions. Each of the following

examples is incorrect. In each case, work out the correct answer. (Parts (b) and (c) are

particularly common errors.)

(1)
1

2
+

3

4
=

1 + 3

4 + 2
=

4

6

(2)
4 + 2

2
= 4

(3)
6 + 4

1 + 4
=

6

1
= 6

(4)
2

5
× 3 =

2× 3

5× 3
=

6

15

(5)
2

2
= 0

(Remember, these are all incorrect!)

Fully worked solutions to all the questions can be found on the MATH1040 website

- www.maths.uq.edu.au/MATH1040.
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