1. (1) $\sqrt{60}=\sqrt{2 \times 30}=\sqrt{2 \times 2 \times 15}=\sqrt{2 \times 2 \times 3 \times 5}$.

Then $\sqrt{60}=2 \times \sqrt{3 \times 5}$.
Hence the solution is $2 \sqrt{15}$
(2) $\sqrt{245}=y \sqrt{5}$. Now $\sqrt{245}=\sqrt{49 \times 5}=\sqrt{7 \times 7 \times 5}=7 \sqrt{5}$. Hence $y=7$
(3) In interval form the answer is $(-5,2]$ and on a real line the answer is:

(4) In inequality form the answer is $x \geq-6.2$ and on a real line the answer is:

(5) $\sqrt{8 y}=12 \sqrt{3}$, so $\sqrt{8 y}=\sqrt{12 \times 12 \times 3}=\sqrt{432}$, so $8 y=432$. Hence $y=54$
(6) $3=-3 y$, so $\frac{3}{-3}=\frac{-3 y}{-3}$

Hence $y=-1$
(7) $6 z+5=1$, so $6 z=1-5$, so $6 z=-4$, so $\frac{6 z}{6}=\frac{-4}{6}$

Hence $z=-\frac{2}{3}$
(8) $(-7-3 y)(-3 y)=-7 \times(-3 y)-3 y \times(-3 y)=21 y+9 y^{2}$
(9) $|-3 y-2|=2$, so

$$
\begin{array}{lll}
-3 y-2=2 & \text { or } & -3 y-2=-2 \\
-3 y=2+2 & & -3 y=-2+2 \\
-3 y=4 & -3 y=0 \\
\frac{-3 y}{-3}=\frac{4}{-3} & y=0
\end{array}
$$

Hence the solutions are: $y=-\frac{4}{3}$ and $y=0$
(10)

$$
\begin{aligned}
(\sqrt{9}+\sqrt{3})(\sqrt{8}+\sqrt{9}) & =\sqrt{9} \times \sqrt{8}+\sqrt{9} \times \sqrt{9}+\sqrt{3} \times \sqrt{8}+\sqrt{3} \times \sqrt{9} \\
& =\sqrt{9 \times 8}+\sqrt{9 \times 9}+\sqrt{3 \times 8}+\sqrt{3 \times 9} \\
& =\sqrt{72}+9+\sqrt{24}+\sqrt{27} \\
& =6 \sqrt{2}+9+2 \sqrt{6}+3 \sqrt{3} \\
& =9+6 \sqrt{2}+3 \sqrt{3}+2 \sqrt{6}
\end{aligned}
$$

(11) Substituting for z into the equation gives $5=3 y+5$, so $3 y=5-5$, so $3 y=0$

Hence $y=0$
(12)

$$
\begin{aligned}
(\sqrt{3}+\sqrt{6}) \sqrt{5} & =\sqrt{5} \times \sqrt{3}+\sqrt{5} \times \sqrt{6} \\
& =\sqrt{5 \times 3}+\sqrt{5 \times 6} \\
& =\sqrt{15}+\sqrt{30}
\end{aligned}
$$

(13) $(3-3 z)(6+z)=3 \times 6+3 \times z-3 z \times 6-3 z \times z=18+3 z-18 z-3 z^{2}=-3 z^{2}-15 z+18$
(14) $-5=\frac{2 y}{-4}+5$, so $\frac{-y}{2}=-5-5$, so $\frac{-y}{2}=-10$, so $-y=-10 \times 2$, so $-y=-20$

Hence solution is: $y=20$
(15) $\frac{-3}{2 x}+4=5$, so $\frac{-3}{2 x}=-4+5$, so $\frac{-3}{2 x}=1$, so $-3=2 x$, so $x=\frac{-3}{2}$

Hence solution is: $x=-\frac{3}{2}$
(16)

$$
\begin{aligned}
\frac{-4}{10}+\frac{-13}{10} & =\frac{-4-13}{10} \\
& =\frac{-17}{10} \\
& =-\frac{17}{10} \\
& =-1 \frac{7}{10}
\end{aligned}
$$

Hence solution is: $x=-1 \frac{7}{10}$
2. (1) $\sqrt{420}=\sqrt{2 \times 210}=\sqrt{2 \times 2 \times 105}=\sqrt{2 \times 2 \times 3 \times 35}$
$=\sqrt{2 \times 2 \times 3 \times 5 \times 7}$.
Then $\sqrt{420}=2 \times \sqrt{3 \times 5 \times 7}$.
Hence the solution is $2 \sqrt{105}$
(2) $\sqrt{12}=x \sqrt{3}$. Now $\sqrt{12}=\sqrt{4 \times 3}=\sqrt{2 \times 2 \times 3}=2 \sqrt{3}$. Hence $x=2$
(3) In interval form the answer is $(-4,-2.9]$ and on a real line the answer is:

(4) In inequality form the answer is $9.2 \leq x \leq 13.9$ and on a real line the answer is:

(5) $\sqrt{80 x}=10 \sqrt{4}$, so $\sqrt{80 x}=\sqrt{10 \times 10 \times 4}=\sqrt{400}$, so $80 x=400$. Hence $x=5$
(6) $6=-2 x-5$, so $6+5=-2 x$, so $11=-2 x$, so $\frac{11}{-2}=\frac{-2 x}{-2}$

Hence $x=-\frac{11}{2}$
(7) $3 y=4$, so $\frac{3 y}{3}=\frac{4}{3}$

Hence $y=\frac{4}{3}$
(8) $-4 z(-7+5 z)=-7 \times(-4 z)+5 z \times(-4 z)=28 z-20 z^{2}$
(9) $|5 y+3|=4$, so

$$
\begin{array}{lll}
5 y+3=4 & \text { or } & 5 y+3=-4 \\
5 y=4-3 & & 5 y=-4-3 \\
5 y=1 & 5 y=-7 \\
\frac{5 y}{5}=\frac{1}{5} & \frac{5 y}{5}=\frac{-7}{5}
\end{array}
$$

Hence the solutions are: $y=\frac{1}{5}$ and $y=-\frac{7}{5}$
(10)

$$
\begin{aligned}
(\sqrt{6}+\sqrt{6})(\sqrt{6}-\sqrt{6}) & =(\sqrt{6}+\sqrt{6}) \times 0 \\
& =0
\end{aligned}
$$

(11) Substituting for y into the equation gives $2=-5 z-6$, so $-5 z=2+6$, so $-5 z=8$, so $\frac{-5 z}{-5}=\frac{8}{-5}$ Hence $z=-\frac{8}{5}$
(12)

$$
\begin{aligned}
\sqrt{7}(\sqrt{2}+\sqrt{3}) & =\sqrt{7} \times \sqrt{2}+\sqrt{7} \times \sqrt{3} \\
& =\sqrt{7 \times 2}+\sqrt{7 \times 3} \\
& =\sqrt{14}+\sqrt{21}
\end{aligned}
$$

(13) $(1-6 y)(3+5 y)=1 \times 3+1 \times 5 y-6 y \times 3-6 y \times 5 y=3+5 y-18 y-30 y^{2}=-30 y^{2}-13 y+3$
(14) $\frac{5 y}{-2}+5=6$, so $\frac{-5 y}{2}=6-5$, so $\frac{-5 y}{2}=1$, so $-5 y=1 \times 2$, so $-5 y=2$, so $\frac{-5 y}{-5}=\frac{2}{-5}$

Hence solution is: $y=-\frac{2}{5}$
(15) $\frac{-6}{-4 x}-4=-5$, so $\frac{3}{2 x}=4-5$, so $\frac{3}{2 x}=-1$, so $3=-1 \times 2 x$, so $3=-2 x$, so $x=\frac{3}{-2}$

Hence solution is: $x=-\frac{3}{2}$
(16)

$$
\begin{aligned}
\frac{7}{13}+\frac{-5}{-10} & =\frac{7 \times 10}{13 \times 10}+\frac{5 \times 13}{10 \times 13} \\
& =\frac{70+65}{130} \\
& =\frac{135}{130} \\
& =\frac{\boxed{5} \times 27}{\not 5 \times 26} \\
& =\frac{27}{26} \\
& =1 \frac{1}{26}
\end{aligned}
$$

Hence solution is: $y=1 \frac{1}{26}$
3. (1) $\sqrt{245}=\sqrt{5 \times 49}=\sqrt{5 \times 7 \times 7}$.

Then $\sqrt{245}=7 \times \sqrt{5}$.
Hence the solution is $7 \sqrt{5}$
(2) $\sqrt{50}=y \sqrt{2}$. Now $\sqrt{50}=\sqrt{25 \times 2}=\sqrt{5 \times 5 \times 2}=5 \sqrt{2}$. Hence $y=5$
(3) In interval form the answer is $[-1,7]$ and on a real line the answer is:

(4) In inequality form the answer is $-9<x \leq-7$ and on a real line the answer is:

(5) $\sqrt{192 x}=8 \sqrt{15}$, so $\sqrt{192 x}=\sqrt{8 \times 8 \times 15}=\sqrt{960}$, so $192 x=960$. Hence $x=5$
(6) $6=6 x$, so $\frac{6}{6}=\frac{6 x}{6}$

Hence $x=1$
(7) $4 x+5=6$, so $4 x=6-5$, so $4 x=1$, so $\frac{4 x}{4}=\frac{1}{4}$

Hence $x=\frac{1}{4}$
(8) $3 y(2-2 y)=2 \times 3 y-2 y \times 3 y=6 y-6 y^{2}$
(9) $|-5 x-1|=0$, so

$$
\begin{aligned}
& -5 x-1=0 \\
& -5 x=1 \\
& \frac{-5 x}{-5}=\frac{1}{-5}
\end{aligned}
$$

Hence the solution is: $x=-\frac{1}{5}$
(10)

$$
\begin{aligned}
(\sqrt{4}-\sqrt{8})(\sqrt{6}-\sqrt{4}) & =\sqrt{4} \times \sqrt{6}-\sqrt{4} \times \sqrt{4}-\sqrt{8} \times \sqrt{6}+\sqrt{8} \times \sqrt{4} \\
& =\sqrt{4 \times 6}-\sqrt{4 \times 4}-\sqrt{8 \times 6}+\sqrt{8 \times 4} \\
& =\sqrt{24}-4-\sqrt{48}+\sqrt{32} \\
& =2 \sqrt{6}-4-4 \sqrt{3}+4 \sqrt{2} \\
& =-4+4 \sqrt{2}-4 \sqrt{3}+2 \sqrt{6}
\end{aligned}
$$

(11) Substituting for z into the equation gives $3=2 y-2$, so $2 y=3+2$, so $2 y=5$, so $\frac{2 y}{2}=\frac{5}{2}$

Hence $y=\frac{5}{2}$
(12)

$$
\begin{aligned}
(\sqrt{2}-\sqrt{2}) \sqrt{7} & =0 \times \sqrt{7} \\
& =0
\end{aligned}
$$

(13) $(4 z-7)(-4 z-3)=4 z \times(-4 z)+4 z \times(-3)-7 \times(-4 z)-7 \times(-3)=-16 z^{2}-12 z+28 z+21=-16 z^{2}+16 z+21$
(14) $\frac{5 z}{-2}+6=4$, so $\frac{-5 z}{2}=4-6$, so $\frac{-5 z}{2}=-2$, so $-5 z=-2 \times 2$, so $-5 z=-4$, so $\frac{-5 z}{-5}=\frac{-4}{-5}$

Hence solution is: $z=\frac{4}{5}$
(15) $-3+\frac{-2}{-4 y}=-4$, so $\frac{1}{2 y}=3-4$, so $\frac{1}{2 y}=-1$, so $1=-1 \times 2 y$, so $1=-2 y$, so $y=\frac{1}{-2}$

Hence solution is: $y=-\frac{1}{2}$
(16)

$$
\begin{aligned}
\frac{12}{8} \div \frac{-10}{14} & =\frac{12}{8} \times \frac{-14}{10} \\
& =\frac{4 \times 3}{4 \times 2} \times \frac{\not 2 \times(-7)}{\not 2 \times 5} \\
& =\frac{3}{2} \times \frac{-7}{5} \\
& =\frac{3 \times(-7)}{2 \times 5} \\
& =\frac{-21}{10} \\
& =-2 \frac{1}{10}
\end{aligned}
$$

Hence solution is: $x=-2 \frac{1}{10}$
4. (1) $\sqrt{245}=\sqrt{5 \times 49}=\sqrt{5 \times 7 \times 7}$.

Then $\sqrt{245}=7 \times \sqrt{5}$.
Hence the solution is $7 \sqrt{5}$
(2) $\sqrt{8}=x \sqrt{2}$. Now $\sqrt{8}=\sqrt{4 \times 2}=\sqrt{2 \times 2 \times 2}=2 \sqrt{2}$. Hence $x=2$
(3) In interval form the answer is $[-8,2.0)$ and on a real line the answer is:

(4) In inequality form the answer is $x \geq-7.6$ and on a real line the answer is:

(5) $\sqrt{32 x}=8 \sqrt{12}$, so $\sqrt{32 x}=\sqrt{8 \times 8 \times 12}=\sqrt{768}$, so $32 x=768$. Hence $x=24$
(6) $0=4 y+2$, so $-2=4 y$, so $\frac{-2}{4}=\frac{4 y}{4}$

Hence $y=-\frac{1}{2}$
(7) $-2 x+3=6$, so $-2 x=6-3$, so $-2 x=3$, so $\frac{-2 x}{-2}=\frac{3}{-2}$

Hence $x=-\frac{3}{2}$
(8) $4 y(-5-5 y)=-5 \times 4 y-5 y \times 4 y=-20 y-20 y^{2}$
(9) $|5 y-4|=5$, so

$$
\begin{array}{lll}
5 y-4=5 & \text { or } & 5 y-4=-5 \\
5 y=5+4 & 5 y=-5+4 \\
5 y=9 & 5 y=-1 \\
\frac{5 y}{5}=\frac{9}{5} & \frac{5 y}{5}=\frac{-1}{5}
\end{array}
$$

Hence the solutions are: $y=\frac{9}{5}$ and $y=-\frac{1}{5}$
(10)

$$
\begin{aligned}
(\sqrt{8}+\sqrt{3})(\sqrt{4}+\sqrt{9}) & =\sqrt{8} \times \sqrt{4}+\sqrt{8} \times \sqrt{9}+\sqrt{3} \times \sqrt{4}+\sqrt{3} \times \sqrt{9} \\
& =\sqrt{8 \times 4}+\sqrt{8 \times 9}+\sqrt{3 \times 4}+\sqrt{3 \times 9} \\
& =\sqrt{32}+\sqrt{72}+\sqrt{12}+\sqrt{27} \\
& =4 \sqrt{2}+6 \sqrt{2}+2 \sqrt{3}+3 \sqrt{3} \\
& =10 \sqrt{2}+5 \sqrt{3}
\end{aligned}
$$

(11) Substituting for z into the equation gives $2=6 y+1$, so $6 y=2-1$, so $6 y=1$, so $\frac{6 y}{6}=\frac{1}{6}$

Hence $y=\frac{1}{6}$
(12)

$$
\begin{aligned}
\sqrt{4}(\sqrt{7}-\sqrt{8}) & =\sqrt{4} \times \sqrt{7}-\sqrt{4} \times \sqrt{8} \\
& =\sqrt{4 \times 7}-\sqrt{4 \times 8} \\
& =\sqrt{28}-\sqrt{32} \\
& =2 \sqrt{7}-4 \sqrt{2}
\end{aligned}
$$

(13) $(-3+5 x)(3 x-1)=-3 \times 3 x-3 \times(-1)+5 x \times 3 x+5 x \times(-1)=-9 x+3+15 x^{2}-5 x=15 x^{2}-14 x+3$
(14) $-x=1$

Hence solution is: $x=-1$
(15) $\frac{4}{-4 y}-1=6$, so $\frac{-1}{y}=1+6$, so $\frac{-1}{y}=7$, so $-1=7 y$, so $y=\frac{-1}{7}$

Hence solution is: $y=-\frac{1}{7}$
(16)

$$
\begin{aligned}
\frac{10}{15} \div \frac{18}{12} & =\frac{10}{15} \times \frac{12}{18} \\
& =\frac{\not 5 \times 2}{\not 5 \times 3} \times \frac{6 \times 2}{\not 6 \times 3} \\
& =\frac{2}{3} \times \frac{2}{3} \\
& =\frac{2 \times 2}{3 \times 3} \\
& =\frac{4}{9}
\end{aligned}
$$

Hence solution is: $x=\frac{4}{9}$
5. (1) $\sqrt{200}=\sqrt{2 \times 100}=\sqrt{2 \times 2 \times 50}=\sqrt{2 \times 2 \times 2 \times 25}$ $=\sqrt{2 \times 2 \times 2 \times 5 \times 5}$.
Then $\sqrt{200}=2 \times 5 \times \sqrt{2}$.
Hence the solution is $10 \sqrt{2}$
(2) $\sqrt{192}=x \sqrt{3}$. Now $\sqrt{192}=\sqrt{64 \times 3}=\sqrt{8 \times 8 \times 3}=8 \sqrt{3}$. Hence $x=8$
(3) In interval form the answer is $(-9,-5)$ and on a real line the answer is:

(4) In inequality form the answer is $-7<x \leq 13$ and on a real line the answer is:

(5) $\sqrt{4 x}=6 \sqrt{13}$, so $\sqrt{4 x}=\sqrt{6 \times 6 \times 13}=\sqrt{468}$, so $4 x=468$. Hence $x=117$
(6) $2=-3 x+3$, so $2-3=-3 x$, so $-1=-3 x$, so $\frac{-1}{-3}=\frac{-3 x}{-3}$

Hence $x=\frac{1}{3}$
(7) $2 x-3=-1$, so $2 x=-1+3$, so $2 x=2$, so $\frac{2 x}{2}=\frac{2}{2}$

Hence $x=1$
(8) $6 z(-5-z)=-5 \times 6 z-z \times 6 z=-30 z-6 z^{2}$
(9) $|-5 z-5|=5$, so

$$
\begin{array}{lll}
-5 z-5=5 & \text { or } & -5 z-5=-5 \\
-5 z=5+5 & & -5 z=-5+5 \\
-5 z=10 & & -5 z=0 \\
\frac{-5 z}{-5}=\frac{10}{-5} & z=0
\end{array}
$$

Hence the solutions are: $z=-2$ and $z=0$
(10)

$$
\begin{aligned}
(\sqrt{9}+\sqrt{4})(\sqrt{6}+\sqrt{9}) & =\sqrt{9} \times \sqrt{6}+\sqrt{9} \times \sqrt{9}+\sqrt{4} \times \sqrt{6}+\sqrt{4} \times \sqrt{9} \\
& =\sqrt{9 \times 6}+\sqrt{9 \times 9}+\sqrt{4 \times 6}+\sqrt{4 \times 9} \\
& =\sqrt{54}+9+\sqrt{24}+\sqrt{36} \\
& =3 \sqrt{6}+9+2 \sqrt{6}+6 \\
& =9+6+2 \sqrt{6}+3 \sqrt{6} \\
& =15+5 \sqrt{6}
\end{aligned}
$$

(11) Substituting for x into the equation gives $5 z+3=-1$, so $5 z=-1-3$, so $5 z=-4$, so $\frac{5 z}{5}=\frac{-4}{5}$

Hence $z=-\frac{4}{5}$
(12)

$$
\begin{aligned}
(\sqrt{2}+\sqrt{5}) \sqrt{7} & =\sqrt{7} \times \sqrt{2}+\sqrt{7} \times \sqrt{5} \\
& =\sqrt{7 \times 2}+\sqrt{7 \times 5} \\
& =\sqrt{14}+\sqrt{35}
\end{aligned}
$$

(13) $(5-2 x)(6+6 x)=5 \times 6+5 \times 6 x-2 x \times 6-2 x \times 6 x=30+30 x-12 x-12 x^{2}=-12 x^{2}+18 x+30$
(14) $\frac{-y}{-4}+5=2$, so $\frac{y}{4}=2-5$, so $\frac{y}{4}=-3$, so $y=-3 \times 4$, so $y=-12$

Hence solution is: $y=-12$
(15) $\frac{-6}{-3 y}+1=-2$, so $\frac{2}{y}=-1-2$, so $\frac{2}{y}=-3$, so $2=-3 y$, so $y=\frac{2}{-3}$

Hence solution is: $y=-\frac{2}{3}$
(16)

$$
\begin{aligned}
\frac{-10}{8} \times \frac{-15}{-18} & =\frac{\not 2 \times(-5)}{\not 2 \times 4} \times \frac{\not \supset \times 5}{\not \supset \times 6} \\
& =\frac{-5}{4} \times \frac{5}{6} \\
& =\frac{-5 \times 5}{4 \times 6} \\
& =\frac{-25}{24} \\
& =-1 \frac{1}{24}
\end{aligned}
$$

Hence solution is: $x=-1 \frac{1}{24}$

