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About these notes

These are the lecture notes for MATH1040 (and for MATH7040, for students

enrolled in the Graduate Certificate of Education. Throughout these notes,

we will only refer to MATH1040, however any comments are also relevant for

MATH7040).

We will use these notes very heavily, so it is important that you get your own

copy. Details on how you can obtain a copy will be given in class during the

first week of semester. Please note that there is no text book for MATH1040,

so these notes are your primary source of information. Do not try to re-use a

copy from previous years or from your friends: the notes change from year to

year, and in addition it is important for you to write things in your own

words.

In lectures, we will use overheard projectors and slides. These notes contain

copies of all the slides used in lectures. Thus you will have time to listen and

think in class, rather than spending your whole time writing. However, there

are many spaces in your notes for questions and solutions. We’ll work

through these in lectures, and you should write down all the information

given.

Each year, some people accidentally lose their notes, which causes big

problems for them. You might like to write your name and some contact

details on the bottom of this page just in case.

Other materials for MATH1040 include a studyguide (which contains extra

information, including previous exam papers and solutions), and assignments.

These notes have been prepared very carefully, but there will inevitably be

some errors in them. We are continually trying to improve the notes. If you

have any suggestions on how to do so, please tell us.

These important notes belong to:

If you find them, please return them to me!

I can be contacted via:
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How to use these notes

These notes are organised into the following main components:

• general notes, which outline background material and introduce
new ideas;

• key points, which summarise key definitions and concepts;

• examples, which give fully-worked examples showing how to solve
important problems;

• questions, which you can try to solve yourself, and will be
completed in class;

These components all look a bit different, to make them easier to find.
A brief example of each one is:

• General notes (involving words and mathematical content) are
often written with bullet points.
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Key points

Key points are written in boxes with rounded corners, like this, with

the title identifing the key point.

Example 0.0.1 How do worked examples look?

Answer: Worked examples are written in “double” boxes, like this,
with the question followed by the solution.

? ?

Question 0.0.2 Questions are written like this, in bold boxes. In
each case there is room to write in the answers (including working).
We’ll complete these questions in lectures, which will often involve
you first doing some working yourself and then some class discussion.
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1 Numbers and arithmetic

Why are we doing this?

• This material is fundamental to all the maths you will do in
MATH1040, and in many courses you’ll take at University.

• It’s even useful in everyday life!

• Many of you will be quite familiar with this material, but
many others will not.

• If you can’t do this stuff, you won’t be able to do the harder
and more interesting things.

• Try to stay awake! Things get much harder fairly quickly.

• Later in semester, many people will have problems with
these introductory concepts.

• Topics we cover in this section are:
– Thinking about Maths.

– Types of numbers.

– Number lines and order.

– Absolute value.

– Simple mathematical operations.

– Order of operations.

– Prime numbers and factors.

– Fractions.

– Introduction to exponentiation.

– Square roots
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1.1 Thinking about Maths

• Mathematics is not easy, but it’s important!

• You’ll encounter some sort of maths almost every day of your
life, at the shops, at a football ground, as you travel, and as
you earn (and spend!) money.

• Most people need to think quite hard when doing maths, but
there are some skills and tricks that really help.

• Two important approaches you must learn to use are
estimating and checking your answers.

! !
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Estimation and approximation

Often, it’s useful to quickly estimate a rough answer. You can

do this by approximating some of the numbers, thus simplifying

the calculations. Your answer will not be exactly correct, but

it should be “close” to the real answer.

The context of the question will determine how accurate you

need to be. Sometimes it’s good enough to be quite rough.

Example 1.1.1 Peter works 36.25 hours per week, and earns
$32.6174 per hour. Estimate his weekly income.

Answer: Working approximately 40 hours per week, earning
approximately $30 per hour, equals $1200.

For reference, the exact answer is $1182.38. Note that we
rounded the number of hours up, and the hourly pay-rate was
rounded down; this helped to increase the accuracy of the es-
timate.

MATH1040, Summer 2007/8. Section 1.1. Page 9



? ?

Question 1.1.2 One Australian dollar (AUD) is worth $0.778
United States dollars (USD). Big Bad John spends 9 nights at
a hotel in Las Vegas, at 93 USD per night. His credit card
company charges a 1.5% fee to convert from USD to AUD.
Roughly estimate his bill in AUD.

? ?

Question 1.1.3 Roughly estimate the number of babies born
in Australia each year.

• Most maths questions have one correct final answer, but
many different ways of getting that answer.

• Usually, you can use any valid method you like to get the
answer, although sometimes you’ll be asked to use a
particular method.

• It’s important that you show the steps you take, as many
marks will usually be allocated to your working.
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Checking your answer

It’s easy to make mistakes when answering a question. When-

ever possible, you should check your answer. Ways of doing

this include:

• Where appropriate, ask yourself: ‘Does the answer make

sense in a real-life context’? (But be careful!)

• Use estimation to check whether the answer is ‘plausible’.

• Check each of the steps in your working.

Also, don’t necessarily trust your calculator - it does exactly

what you tell it to do, so make sure you press the right keys!

? ?

Question 1.1.4 For each question, decide which answer(s) are
most likely to be correct. Explain why.
1. In an Olympic 400m running race, the maximum speed

attained by the winner (in metres per second) is:

(a) 63.7 (b) 10 (c) 2
2. $1000 is invested in a bank account earning 8% interest per

annum for 3 years. What is the final balance:
(a) $16728.33
(b) $827.67
(c) $1259.71
(d) $1412.68

Be careful how you use estimation. In most cases, problems need
exact answers. Estimation can be used to check, but shouldn’t
be used to find the actual answer.

This section might seem easy, but it’s so important that we
covered it first. For the rest of this course (and others), make
sure you use estimation, and always check your answers.
MATH1040, Summer 2007/8. Section 1.1. Page 11



1.2 Types of numbers

• N natural numbers

– “counting” numbers

– 1, 2, 3, 4, . . .

– examples of uses:
∗ counting pigs in a (non-empty) pen
∗ counting how many birthdays you’ve had

• Z integers

– positive and negative numbers without decimals

– . . . ,−3,−2,−1, 0, 1, 2, 3, . . .

– examples of uses:
∗ measuring a credit-card balance in cents
∗ counting number of seconds before or after a rocket

takes off.

• Q rational numbers

– quotient of integers

– those numbers which can be written exactly as a fraction

– For example,
−3, 1

4 = 0.25, −7
5 = −1.4, 0 = 0

1

4, 1000, 49
50 , −41

2

– examples of uses:
∗ measuring blood alcohol content
∗ cutting a birthday cake into pieces, with sizes

proportional to ages

MATH1040, Summer 2007/8. Section 1.2. Page 12



• R real numbers

– includes rationals and irrationals

– Irrationals: numbers which are not rational (and hence
cannot be written exactly as a fraction).

– e.g. π = 3.14159 . . .
√

2 = 1.4142 . . .

also e,
√

5, π2

– examples of uses:
∗ finding the area of an oval
∗ calculating length of the fence of a round yard.

1.3 Number lines and order

1.20.5−1.5 −1−2−3 3210

• A number line (sometimes called a real line) shows the order
of real numbers; given any two real numbers, the one to the
right is ‘greater than’ the one to the left.

• Alternatively, the left one is ‘less than’ the one to the right.

• Every real number occurs somewhere on the number line; we
often just mark integers.

• Loosely, we think of the number line going from −∞
(negative infinity) on the left to ∞ (infinity) on the right.

Given two numbers, there are 5 common ways of writing the
relationship between the numbers:

= < > ≤ ≥
equal less greater less than or greater than

to than than equal to or equal to
MATH1040, Summer 2007/8. Section 1.3. Page 13



Example 1.3.1
−3 < 1 1 > −3 −3 ≤ 1 1 ≥ −3

−2 ≤ −2 −2 ≥ −2 −2 = −2

1
4
<

1
2

1
2
≥ 1

4
1
4

= 0.25

1.4 Absolute value

• On a number line, all numbers to the left of zero are
negative, written with a − sign before them (eg −3).

• There is a special relationship between a number and its
negative: both are exactly the same distance from 0 (in
opposite directions).

Example 1.4.1 −3 and 3 are both a distance of 3 from the
point 0. 3 is three steps to the right of 0, −3 is three steps
to the left of 0.

−1−2−3 3210

−(−3) = 3 (Note: −0 = 0)

Given a number, sometimes we are interested in how far the
number is from 0, but we don’t care in what direction.

! !
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Absolute value.

The absolute value of a number is its distance from zero.

If x is any number then we write |x| to represent the absolute

value of x.

Note that absolute value is always positive or 0.
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Example 1.4.2 Understand the following examples.
|2| = 2 | − 2| = 2 | − 31

2 | = 31
2 |0| = 0 −|5| = −5

? ?

Question 1.4.3 Evaluate each of the following:

(1) | − 7.82|

(2) −| − 1|

(3) | − 2 + 5|

1.5 Simple mathematical operations

• You should be quite familiar with the following operations:

+ addition − subtraction
× multiplication / or ÷ division
( ) or [ ] brackets

• Note that subtraction is the same as adding the negative; for
example, 3− 4 = 3 + (−4).

• When multiplying or dividing negative numbers, be careful!
The rules are:

1st number × or ÷ 2nd number answer
+ve × or ÷ +ve +ve
+ve × or ÷ −ve −ve
−ve × or ÷ +ve −ve
−ve × or ÷ −ve +ve

Example 1.5.1 4× 3 = 12 6÷ 3 = 2
4×−3 = −12 6÷−3 = −2
−4× 3 = −12 −6÷ 3 = −2
−4×−3 = 12 −6÷−3 = 2
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• Be careful when dealing with zero:

– It is never possible to divide by zero.

– Zero divided by any non-zero number equals zero.

– Any number × zero equals zero.

– If two numbers multiply to give zero, then (at least) one
of the numbers must equal zero.

Example 1.5.2 Understand each of the following:

0× 57 = 0
0
7

= 0
0
−1

= 0

0
0

is undefined, and
7
0

is undefined.

1.6 Order of operations

• Consider the expression 2 + 3× 5.

– do we add 2 to 3, and then multiply by 5, giving 25; or

– do we multiply 3 by 5, and then add 2, giving 17?

• We need rules for order of operations.

• The word BEDMAS (or BOMDAS, or BODMAS) can help
you remember the rules.

• Each letter stands for a common mathematical operation;
the order of the letters matches the order of doing the
mathematical operations

MATH1040, Summer 2007/8. Section 1.6. Page 16



letter stands for: example
B brackets (3 + 4)
E exponentiation 34{
D division 3/4
M multiplication 3× 4{
A addition 3 + 4
S subtraction 3− 4

• The basic rule is work from left to right, with the exact
order decided by BEDMAS.

– B: Look for any brackets in the expression, and evaluate
inside the brackets first. If there are brackets inside
brackets, then the innermost brackets get evaluated
before the outermost ones.

– E: Next, any exponentiation must be evaluated.

– D, M: Next, evaluate divisions and multiplications,
working from left to right. Note that even though D
comes before M in BEDMAS,
they have the same priority.
(The rule could also be called BEMDAS.)

– A, S: Finally, evaluate any additions or subtractions,
working left to right. Even though A comes before
S in BEDMAS, they have the same priority.

Example 1.6.1 Evaluate 3 + 4× 2 and (3 + 4)× 2.

(1) 3 + 4× 2 = 3 + 8 = 11

(2) (3 + 4)× 2 = 7× 2 = 14

MATH1040, Summer 2007/8. Section 1.6. Page 17
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Question 1.6.2 Evaluate each of the following expressions:

(1) 3 + 6 + 10÷ 5

(2) 2× (1 + 4× (6÷ 3))

(3) 12× 2÷ 3× 6÷ 12

As a special case, if there are more than two additions or
multiplications all together (with no other operations),
you can evaluate them in any order.

? ?

Question 1.6.3 Show that 2× 3× 4 = 3× 2× 4 = 4× 2× 3.
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1.7 Prime numbers and factors

• Given an integer, a second integer is called a factor of the
first if it divides exactly into the first.

• If two or more integers share the same factor, then this is
called a common factor of the integers.

Example 1.7.1 14 = 2× 7 = 1× 14.
Hence the factors of 14 are 1, 2, 7 and 14.

! !
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Finding factors

There are some simple tricks that let us easily check whether

a small natural number is a factor of a given integer. A given

integer is divisible by:
2 if the last digit of the integer is even

3 if the sum of the digits in the integer is divisible by 3

4 if the last two digits form a integer divisible by 4

5 if the integer ends in 0 or 5

6 if the integer is divisible by both 2 and 3

9 if the sum of the digits in the integer is divisible by 9

10 if the integer ends in 0

Example 1.7.2

• 295 is not divisible by 3, as 2 + 9 + 5 = 16, then 1 + 6 = 7,
and 7 is not divisible by 3.

• 924 is divisible by 6, as 4 is even and 9 + 2 + 4 = 15, which
is divisible by 3.

• 94682128 is divisible by 4, as 28 is divisible by 4.

• 11875 is divisible by 5 but not divisible by 10.
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• A prime number is a natural number, greater than 1,
whose only factors are 1 and itself.

Example 1.7.3

• 12 is NOT prime because 12 = 3 × 4; thus 3 and 4 are
factors of 12.

• 17 is prime (check this using the tricks on the previous
page).

• The first 7 prime numbers are 2, 3, 5, 7, 11, 13, 17.

• 2 is the only even prime number.

• By convention, 1 isn’t prime.

• Any natural number larger than 1 is either prime, or can be
written as a product of prime factors.

Example 1.7.4

• 5 is prime.

• 4 = 2× 2, and 2 is prime.

• 8 = 4× 2 = 2× 2× 2.

? ?

Question 1.7.5 Write each of the following as the product of
prime factors (if it’s not already prime):

(1) 12

(2) 31

(3) 48
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1.8 Fractions

• A fraction is the ratio of an integer (the numerator) divided
by another integer (the denominator).

• Given a fraction
a

b
, its inverse is

b

a

Example 1.8.1 The inverse of
2
3

is
3
2

.

• Consider the fractions
1
2
,

3
6
,

4
8
,

49
98

.

• Each of these fractions has exactly the same value: they are
equivalent fractions.

• A fraction is written in simplest form or lowest terms if the
numerator and denominator have no common factors other
than 1. In your final answer, you must always find the
simplest form.

• The process of converting fractions to simplest form is called
cancelling common factors.

• The method is to repeatedly find common factors for the
numerator and denominator, and divide both by the common
factor, until the only common factor is 1.

• (Cancelling works because any number divided by itself
equals 1.)

Example 1.8.2 20
30

=
2× 2× 5
2× 3× 5

=
2
3

(We obtained the final answer by cancelling 2 × 5 = 10 from the top and

bottom of the fraction.)

MATH1040, Summer 2007/8. Section 1.8. Page 21



• Soon we will see how to perform arithmetic on fractions.

• To do so, we often need to convert a fraction to an
equivalent fraction with a larger denominator.
(Remember, cancelling involves converting to an equivalent
fraction with a smaller denominator.)

• This is done by multiplying both the numerator and
denominator by the same quantity (so once again, we do the
same thing to both the top and the bottom).

Example 1.8.3 Rewrite
1
3

with a denominator of 12.

1
3

=
1× 4
3× 4

=
4
12

(Don’t forget to check your answer by cancelling.)

• If two or more fractions have the same denominator then
they are said to have a common denominator.

? ?

Question 1.8.4 Write
2
3

and
3
4

with a common denominator.

? ?

Question 1.8.5 Write
3
8

and
1
4

with a common denominator.
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Arithmetic involving fractions

The following rules show how to perform arithmetic on fractions.
You must always write your final answer in simplest form.

• To multiply two fractions, put the product of their
numerators as the numerator of the result, and the product
of their denominators as the denominator of the result.

• That is, multiply the top numbers together and multiply the
bottom numbers together.

Example 1.8.6 3
4
× 2

3
=

3× 2
4× 3

=
6
12

=
1
2

• To divide two fractions, multiply the first fraction by the
inverse of the second fraction.

• That is, change ÷ to ×, flip the second fraction, and then
multiply them.

Example 1.8.7

3
4
÷ 1

8
=

3
4
× 8

1
=

3× 8
4× 1

=
24
4

= 6

? ?

Question 1.8.8 Evaluate
1
5
× 1

4
÷ 2

40
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• To add (or subtract) fractions with a common denominator,
we add (or subtract) the numerators and place the result
over the common denominator.

Example 1.8.9

13
32

+
7
32
− 4

32
=

13 + 7− 4
32

=
16
32

=
1
2

• To add (or subtract) fractions with different denominators,
we must convert them to equivalent fractions with a
common denominator, then we proceed as above.

Example 1.8.10

1
4
− 1

6
+

1
3

=
3
12
− 2

12
+

4
12

=
3− 2 + 4

12
=

5
12

? ?

Question 1.8.11 Evaluate each of the following:

(1)
1
2
− 1

4
+

1
8

(2)
5
3

+
4
3
÷ (6÷ 3)
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? ?

Question 1.8.12 There are some very common errors when
dealing with fractions. Each of the following examples is in-
correct. In each case, work out the correct answer. (Parts (b)
and (c) are particularly common errors.)

(a)
1
2

+
3
4

=
1 + 3
4 + 2

=
4
6

(b)
4 + 2

2
= 4

(c)
6 + 4
1 + 4

=
6
1

= 6

(d)
2
5
× 3 =

2× 3
5× 3

=
6
15

(e)
2
2

= 0

(Remember, these are all incorrect!)
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1.9 Introduction to exponentiation

• We need to be familiar with exponent or power form:
4× 4 = 42

4× 4× 4 = 43

4× 4× 4× 4 = 44

and so on.

• This is what is meant by the E (exponentiation) in BEDMAS

• 42 is pronounced “4 squared”, or “4 to the power 2”;

• 43 is pronounced “4 cubed”, or “4 to the power 3”;

• In the expression 43, 4 is called the base and 3 is called the
power or index

Exponentiation and negative numbers

• On Page 15 we saw that:
(−ve) × (+ve) = −ve and (−ve) × (−ve) = +ve

• Think about what this means for exponentiation.

• When raising a −ve number to a power:

– If the power is even, the answer is positive.

– If the power is odd, the answer is negative.

Example 1.9.1 (−1)5 = −1×−1×−1×−1×−1

= 1 ×−1×−1×−1

= −1×−1×−1

= 1 ×−1

= −1

Example 1.9.2 (−2)2 = −2×−2 = 4
(−2)3 = −2×−2×−2 = 4×−2 = −8
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? ?

Question 1.9.3 Evaluate each of:

(1) (−1)17

(2) (−1)356

BEDMAS and exponentiation

From BEDMAS, we know that exponentiation has higher
precedence than any operation besides brackets.

Example 1.9.4 Understand each of these examples:

1. 3 + 42 = 3 + 16 = 19

2. 2× 32 = 2× 9 = 18

3. (2× 3)2 = 62 = 36

4. 3 + 2(2+1) = 3 + 23 = 3 + 8 = 11

? ?

Question 1.9.5 Evaluate each of the following:

(1) 4− 22 + (−3)3

(2) (−2)2 − 2( 1
2
÷ 1

6
)
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1.10 Square roots

• On Page 26 we saw how to square numbers. (For example,
32 = 3× 3 = 9).

• The opposite of squaring is called finding a square root.

! !

�

�

�
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Square root.

The square root of a given number is a number which, multi-

plied by itself, equals the given number. The special sign
√

is used to represent the square root of a number; for example,

the square root of 25 is written
√

25, which equals 5.

Example 1.10.1 9 = 32, so 3 =
√

9. 16 = 42 so 4 =
√

16.

• Remembering back to multiplication of numbers on Page 15
we saw that a negative number multiplied by a negative
number equals a positive number.

• This is important for square roots.

• For example, −5×−5 = 25, so
√

25 also equals −5 (we saw
above that

√
25 = 5).

• We can write both square roots together using the ‘plus or
minus’ sign, so

√
25 = ±5.

Example 1.10.2 Find
√

9.
9 = 3× 3 so 3 is a square root of 9.
9 = (−3)× (−3) so −3 is also a square root of 9.
Hence

√
9 = ±3.
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• Any negative number does not have a square root.

• This is easy to see. Take any negative number:

– If its square root is positive, then multiplying the square
root by itself would give a positive number.

– If its square root is negative, then multiplying the square
root by itself would also give a positive number.

! !
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%

How many square roots?

(1) Any positive number has exactly two square roots, one

positive and one negative. (Usually, we will only use the

positive square root. If we want the negative square root,

we write a − sign in front of the square root sign.)

(2) The number 0 has exactly one square root, which is 0.

(3) Any negative number has no square root.

• We can find the square root of numbers that are not integers.

• A square root does not have to be an integer.

• Any integer whose square root(s) are themselves integers is
called a square number.

Example 1.10.3

•
√

1
4

=
1
2

, as
1
2
× 1

2
=

1
4

• The first 11 square numbers are

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
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2 Algebra

Why are we doing this?

• Often, rather than dealing with specific numbers, we need to
undertake operations in a more general manner.

• Hence we need to be able to manipulate expressions
involving letters (rather than only numbers).

• Whatever degree you are doing, you’ll almost certainly use
this material extensively.

• Many students find that their algebra skills let them down
throughout the rest of semester.

• Try to understand this stuff, and practise if you need to.

• Topics we cover in this section are:

– Introduction to algebra.

– Expanding and factorising.

– Formulae.

– Solving absolute values.

– Intervals on the real line.

– Solving inequalities

– Square roots.

– Powers and Exponents.
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2.1 Introduction to algebra

• Until now, we’ve only dealt with numbers.

• Letters are often used in mathematics. Usually they are
standard letters like x and y, but sometimes we use Greek
letters (such as π, pronounced pi).

• Letters are used in the following ways:

– as numerical placeholders; for example, ‘find 3x− 2 where
x = 4’, so x is replaced by its numerical value.

– as specific unknowns; for example, ‘find x where
4x+ 1 = 9’.

– as generalised numbers or variables; for example, ‘for any
positive number x,

√
x×
√
x = x’ or ‘for any rectangle,

A = l × b’.
– as constants; for example the letter π is always used to

represent the ratio of the circumference of a circle to its
diameter, which is the irrational number 3.141592 . . . .

• Sometimes if we need many letters, or they are related, we
use a subscript on them, where the subscript is an integer
which is greater than or equal to 0.

Example 2.1.1 These variables represent different quantities:
x1, x10, y1, z100, z0, z523, x27.

• An algebraic expression is a combination of numbers,
letters and mathematical operations. Commonly, the name is
shortened to expression.

Example 2.1.2 Here are some examples of expressions:
x2 − x+ 4 x1 − x2 + x1x2 πr2
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• Don’t be too worried about letters, as operations on them
are very similar to operations on numbers. For example:

– BEDMAS applies.

– powers of variables are the same as powers of numbers:
for example, x3 = x× x× x.

– Fractions with letters in them act just like fractions which
contain only numbers (so, for example, you can cancel
letters in fractions in the same way that you cancel
numbers).

– letters can appear in square root signs.

• However, having letters does complicate calculations a bit;
make sure you understand the following material.

Multiplication and division

• It is easy to evaluate 3× 4 to give 12.

• However, we cannot evaluate 3× x if we don’t know what
value x has.

• By convention, we write 3× x as 3x. The multiplication sign
becomes invisible and the number, called the coefficient, is
always written before the letter.

• Similarly, we can evaluate 12÷ 6 to give 2, but we cannot
evaluate x÷ 4. Instead, we write this as a fraction

x

4
, which

is the same as
1
4
× x or

1
4
x.

• When multiplying and dividing letters, the same rules apply
as when operating on numbers.

• These are shown in the following example.
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Example 2.1.3 Rules for multiplying and dividing:
Rule Example
a× b = ab = ba = b× a 3× 4 = 4× 3 = 12

a× (−b) = (−a)× b = −ab 3×−4 = −3× 4 = −12

(−a)× (−b) = ab −3×−4 = 3× 4 = 12

a

b
× c

d
=
ac

bd

3
4
× 1

5
=

3× 1
4× 5

=
3
20

a÷ b = a×
(

1
b

)
=
a

b
3÷ 4 = 3× 1

4
=

3
4

a

−b
= −a

b
=
−a
b

3
−4

= −3
4

=
−3
4

−a
−b

=
a

b

−3
−4

=
3
4

Example 2.1.4 We can do this two ways:
2× 6x
z
× 2× z

3
or

2× 6x
z
× 2× z

3

=
12x
z
× 2z

3
= 2× 2x× 2

=
24xz
3z

= 8x

= 8x

? ?

Question 2.1.5 Simplify
8× ab
c
÷
(

18× ab
c

)
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Like terms

• Pieces of an expression separated by the operations “+” or
“−” are called terms. For example, in the expression
3xy + 4x+ 2y, the terms are 3xy, 4x and 2y.

! !
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Like terms

Terms are called like if they have the same letters, each raised

to the same powers (and only their coefficients can differ).

Example 2.1.6 Each of the following lines contains like terms
(but terms that are not on the same line are not like).

• x, 7x, −2x, 8x/3

• x2, 6x2, −3x2/2

• x2y, −8x2y, 0.1x2y

• 3xy2, −xy2, 0.1xyy

• Usually, expressions are rearranged so that like terms are
grouped together.

Simplifying expressions

• Given an expression, we will often need to simplify it, which
means rewriting it in a simpler form.

• This is done by evaluating the mathematical operations as
far as possible, using BEDMAS to determine the order of the
operations.

• Once you have done BEDM (brackets, exponentiation,
division and multiplication), rearrange the expression with
like terms grouped together, and finally perform addition
and subtraction of like terms.

MATH1040, Summer 2007/8. Section 2.1. Page 34



Addition and subtraction

• Given two like terms, they are added (or subtracted) by
adding (or subtracting) their coefficients, to give a single
term with the same letter(s) and power(s).

• Note: terms are only like if they include the same letters
each raised to the same powers in each term. For
example, you cannot simplfy x2 + x3.

Example 2.1.7
(1) 2x+ 3x = 5x
(2) 3x+ 2y + 4x = 7x+ 2y
(3) p3 + 4p2 + 17− 3p2 = p3 + 4p2 − 3p2 + 17

= p3 + p2 + 17

(4) 6x− x× x+ x2 − 2x× 3 = 6x− x2 + x2 − 6x
= 6x− 6x− x2 + x2

= 0

? ?

Question 2.1.8 Simplify each of:

(a) 2x+ 4y × 3x+ 3x− y

(b) 6x÷ 2 +
√

9− 2x−
√

16
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2.2 Expanding and factorising

• From BEDMAS, we know that brackets must be evaluated
first. This is easy if the brackets contain like terms.

• If not, you need to use some new techniques to remove the
brackets (but still remaining consistent with the BEDMAS
rule).

Example 2.2.1 Simplify 2(3x+ 4x) and 2(3x+ 2y).

In each case, BEDMAS indicates that the section inside brack-
ets must be evaluated first. Then 2(3x+ 4x) = 2(7x) = 14x.

However, when evaluating 2(3x + 2y), the section inside the
brackets does not contain any like terms, so cannot immediately
be simplified.

A different approach, called expanding, resolves this problem. We
can see how the approach arises by thinking about operations on
numbers.

Example 2.2.2 Evaluate 2(3 + 6).

BEDMAS says that we must first calculate 3 + 6 = 9, and then
multiply by 2, giving 2× 9 = 18.

If you think about this, you’ll notice that when we multiplied
9 by 2, we were effectively multiplying both 3 and 6 by 2, and
adding the answers. That is:

2(3 + 6) = 2× 3 + 2× 6 = 6 + 12 = 18.

This is demonstrated in the following diagram, in which we have
written a, b and c instead of 2, 3 and 6.
MATH1040, Summer 2007/8. Section 2.2. Page 36



a( b + c)  =  ab + ac

ab

ac

• When expanding an expression like a(b+ c), first multiply
the thing outside the brackets by each of the things inside
the brackets, and then add your answers.

• Be careful with “−” signs and negative numbers.

Example 2.2.3

• 3(p+ 2) = 3× p+ 3× 2 = 3p+ 6

• (c− 4)d = c× d− 4× d = cd− 4d

? ?

Question 2.2.4 Expand each of the following:

(a) 6(2− x)

(b) −3(y − 4)

(c) −3(4x− y)

(d) −(x− 1)

• In more complicated examples there may be two sets of
brackets multiplied together, such as (4 + 5)× (3 + 2).

• Again, it is easy to evaluate expressions which contain only
numbers, but we need a different approach to expand similar
expressions which contain letters.

• This is demonstrated in the following diagram, in which we
have written a, b, c and d instead of 4, 5, 3 and 2.
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(a + b)(c + d)   =   ac + ad + bc + bd

bc

bd

ad

ac

• When expanding something like (a+ b)(c+ d), multiply each
of the things inside the first brackets by each of the things
inside the second brackets, and then add your answers.

Example 2.2.5 Expand (x+ 2)(y − 3) and (2x− 3)(x− 4).

(x+ 2)(y − 3) = x× y + x× (−3) + 2× y + 2× (−3)

= xy − 3x+ 2y − 6

(2x− 3)(x− 4) = 2x× x+ 2x× (−4)− 3× x− 3× (−4)

= 2x2 − 8x− 3x+ 12

= 2x2 − 11x+ 12

• Some people remember how to expand these brackets using
the word FOIL, in which F stands for First, O for Outer, I
for Inner and L for Last:
Multiply the first terms of
each brackets, then multiply the
outer terms of each brackets,
then the inner terms of each
brackets and finally the last
terms of each brackets.

(a + b)(c + d)

F

O

I

L

• There are some special cases of these expanding rules, when
the numbers in the first brackets are the same as the
numbers in the second brackets. Don’t try to memorise
them; use FOIL.
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Example 2.2.6 Understand each of the following examples;
pay particular attention to the “−” signs.

(a+ 5)(a+ 5) = a2 + 5a+ 5a+ 25

= a2 + 10a+ 25

(x−
√

3)(x+
√

3) = x2 +
√

3x−
√

3x− 3

= x2 − 3

(a− 3)(3− a) = a× 3− a× a− 3× 3− 3× (−a)

= 3a− a2 − 9 + 3a

= −a2 + 6a− 9

Example 2.2.7

(a+ b)× (a+ b) = a× a+ a× b+ b× a+ b× b = a2 + 2ab+ b2

(a− b)× (a− b) = a× a− a× b− b× a+ b× b = a2 − 2ab+ b2

(a+ b)× (a− b) = a× a− a× b+ b× a− b× b = a2 − b2

? ?

Question 2.2.8 Expand and simplify (x− 2)× (3x− 4)

? ?

Question 2.2.9 Expand and simplify (2x− 3)2
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Factorisation

• In previous problems, we have expanded expressions which
contain brackets.

• For example, 6x(x− 2) = 6x2 − 12x.

• Often the reverse process is useful, particularly in simplifying
fractions and solving equations.
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Factorising

Factorising an expression involves finding a common factor in

some or all of the terms of the expression, and rewriting the

expression with the common factor multiplied by a new expres-

sion in brackets.

Factorising is often harder than expanding. It takes skill and

experience to identify common factors, and some expressions

don’t factorise.

When factorising, it is usual to use the “biggest” common fac-

tor.

Example 2.2.10 In each of the following, the expression on
the left of “=” factorises to give the expression on the right. In
each case, you should check the answer by expanding.

• 2x+ 6 = 2(x+ 3)

• x2 + 3x = x(x+ 3)

• −4n− 8n2 = −4n(1 + 2n)

• 36xy+16xyz = 4xy(9+4z) (There are several common
factors; we used 4xy as it is the “biggest” one.)

• 2p2 + 2p− 8pqr = 2p(p+ 1− 4qr)
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? ?

Question 2.2.11 Factorise each of the following expressions:

(1) 6st+ 10s

(2)
−3x

2
+ 3xy

(3) 3ef + 5gh

• Factorising is essential for simplifying fractions.

Example 2.2.12 Simplify
36xy + 16xyz

2x
.

Answer: In Example 2.2.10, we used the “biggest” common fac-
tor 4xy to factorise the numerator. When simplifying fractions,
the denominator often gives a hint to a useful common factor
in the numerator. In this example, because 2x is a common
factor of the numerator, it will cancel with the denominator.

36xy + 16xyz
2x

=
2x(18y + 8yz)

2x

= 18y + 8yz

Note that the final answer factorises to 2y(9+4z). Both answers
are equally correct.
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? ?

Question 2.2.13 Simplify each of the following:

(1)
8x− 8

(x− 1)(x+ 1)

(2)
6x+ 15xy
12p+ 30py

2.3 Equations and Formulae

• An equation relates letters and numbers to each other,
using an equals sign.

• A formula (plural formulae) is an equation that gives a rule
for calculating a particular quantity or thing

Example 2.3.1 Here are some examples of formulae:

1. A = πr2

2. P = A(1 + r)n
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• In each of these formulae, a value on the left-hand side (LHS)
of the equals sign is given by an expression on the right-hand
side (RHS) of the equals sign.

• We often choose letters carefully, to help the reader. For
example, A often means area, V means volume, l means
length, t means time, and so on.

Substituting into equations

• If values are known for all but one of the letters in an
equation, then those values can be substituted into the
equation, to enable the unknown value to be determined.

• Usually, the unknown is on the left-hand side of the equals
sign, but that is not always the case.

• Often the equation needs to be determined from a “wordy”
question, before values can be substituted into it.

? ?

Question 2.3.2 A rock is dropped vertically onto a lecturer’s
head, with initial speed u = 4. It accelerates at a rate of
g = 9.8. The distance D it has travelled after t seconds is given

by D = ut+
1
2
gt2. How far has it travelled after 2 seconds?
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Transposing equations

• Often we need to rearrange an equation, so that a particular
letter occurs by itself on one side.

• Usually this is on the left, but sometimes it is easier to
rearrange the equation with that letter on the right.

• This is often called transposing the equation.

• Note that we are not changing the equation, just writing it
in a different order.
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Rules for transposing equations.

1. The same quantity may be added to, or subtracted from,

both sides.

2. Both sides may be multiplied by, or divided by, the same

quantity.

• In words, this can be described as “whatever you do to one
side, you must also do to the other side”.

• Be careful: for example, you can’t divide by zero.

Example 2.3.3 Transpose the following, to give x = . . . .

x− y = 4

To get x by itself, we need to move the −y away from the left-
hand side of the equation. We can do this by adding +y to
each side. Then:

x− y = 4

so x− y + y = 4 + y

so x = 4 + y
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• The equals sign in an equation signifies that the LHS is equal
to the RHS, and that the RHS equals the LHS.

• For example, x = 4 is the same as 4 = x.

• When transposing, you don’t have to always isolate your
variable on the LHS; sometimes it will be easier to move it to
the RHS.

• Remember that you can swap the LHS and RHS at any time.

Example 2.3.4 Solve x− 3 = 5x+ 5.
Answer:
We’ll solve this in two ways. First, isolate x on the left:

x− 3 = 5x+ 5

so x− 5x− 3 = 5x+ 5− 5x

so − 4x− 3 = 5

so − 4x− 3 + 3 = 5 + 3

so − 4x = 8

so x = −2

Alternately, isolate x on the right:

x− 3 = 5x+ 5

so x− 3− x = 5x+ 5− x
so − 3 = 4x+ 5

so − 3− 5 = 4x+ 5− 5

so − 8 = 4x

so − 2 = x

so x = −2

Regardless of which method we use, the answer is the same.
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Question 2.3.5 Transpose each equation to give x by itself on
one side of the equals sign, simplifying all like terms.

(1) x− 3a = 0

(2) −x+ 4y = x

(3) 5 =
y

x

(4)
1

x− 3
= b
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Solutions to equations

• A solution to an equation is a set of values for each of the
letters in the equation, which, when substituted into the
equation, make the equation true.

Example 2.3.6 Show that y = 3 is a solution of the equation
y + 4 = 7.

Answer: Substitute y = 3 into the left-hand side (LHS) of the
equation, so y + 4 = 3 + 4 = 7, which matches the right-hand
side (RHS).

Hence y = 3 is a solution.

? ?

Question 2.3.7 Show that x = 6 is a solution of the equation

2x− 12
x

= 10

• Solving an equation involves finding values for each of the
letters so that the values give a solution to the equation.

• Usually, you will need to rearrange the equation, writing a
letter by itself on the left-hand side, and everything else on
the right-hand side.

• A fundamental tool for solving equations is transposition; we
covered this above.

• Remember: whatever you do to one side of the equation you
must also do to the other side.
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Question 2.3.8 Solve the equations:

(a) 3x+ 4 = 2x

(b) 2(x+ 4) = 3(x− 2)

(c) 24− 2x =
x

2
+ 4

Check each answer by substituting it into the equation!
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2.4 Solving absolute values

• On Page 14 we encountered absolute values.

• The absolute value of x, written |x|, means the distance that
x is from 0.

• Absolute value is always positive (or 0).

• By definition, |x| = a means x = a or x = −a.

Example 2.4.1 If |x| = 2 then x = 2 or x = −2, which is
sometimes written x = ±2

• Thus there are two values of x which satisfy |x| = 2.

• Similarly, we can solve more complicated expressions that
involve absolute value signs.

• In most cases there will be two solutions to such problems.

Example 2.4.2 Solve |x+ 1| = 4

Answer: We are solving |(something)| = 4.

Hence we must have (something) = 4 or (something) = −4.

But here the (something) is x+ 1

Hence we have x+ 1 = 4 or x+ 1 = −4

We solve each of these as a separate equation.

If x+ 1 = 4 then x = 4− 1 so x = 3
If x+ 1 = −4 then x = −4− 1, so x = −5

Hence the two solutions are x = 3 or x = −5

(Check both answers by substituting each one into the original
expression.)
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Question 2.4.3 Find all x such that |2x| = 6

? ?

Question 2.4.4 Find all x such that |4x+ 2| = 2

? ?

Question 2.4.5 Find all x such that | − 2x− 3| = 7
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2.5 Intervals on the real line

• On Page 13 we briefly encountered number lines (or real
lines) and order (such as ‘less than’, written <).

• Any real number can be marked as a single point on the
real line.

• Intervals or regions can also be marked on the real line.
An interval includes all real numbers which lie between two
endpoints.

• Such intervals can be described by inequalities, using the
signs: < ≤ > ≥

Example 2.5.1 On a real line, mark the interval corresponding
to x ≥ 0 and x ≤ 2.

−1−2−3 3210

We have highlighted the region between x = 0 and x = 2,
with a solid black circle at each end point, and a (curved) line
between the end points. This is used to denote every point
between 0 and 2 (inclusive).

Example 2.5.2 On a real line, mark the interval corresponding
to x > −1 and x < 2.

−1−2−3 3210

Now we have used a non-filled circle at each end point. This
is used to denote every point between −1 and 2, but not
including −1 and 2.
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• Make sure you understand the difference between ≤ and <,
and between ≥ and >

– For ≤ and ≥ the endpoint occurs inside the interval, and
is marked with a solid circle.

– For < and > the endpoint occurs outside the interval,
and is marked with a non-filled circle.

• Some intervals only have one endpoint (for example, x > 4).

• This means that the interval goes on forever in one direction.
If it goes to the right then we say it goes to infinity, written
∞. If it goes to the left, we say it goes to negative infinity,
written −∞.

• This is marked on a real line by an arrow pointing in the
correct direction.

Example 2.5.3 On a real line, mark x > 0.

−1−2−3 3210

? ?

Question 2.5.4 Mark each of the following intervals on the
real line:

(1) x ≤ 2

(2) −2 ≤ x ≤ 2 (This means −2 ≤ x and x ≤ 2.)

(3) x < 2

(4) x > 2
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• There is an easy way to write intervals:

– [a, b] denotes the interval a ≤ x ≤ b
– [a, b) denotes the interval a ≤ x < b

– (a, b] denotes the interval a < x ≤ b
– (a, b) denotes the interval a < x < b

• a and b are called the endpoints of the interval. Note that a
(the first endpoint) is always less than or equal to b.

• Note the brackets: they indicate the type of interval.

– A square bracket means the corresponding endpoint falls
inside the interval. On the real line, the endpoint is
marked with a solid circle.

– A round bracket means the corresponding endpoint falls
outside the interval. On the real line, the endpoint is
marked with a non-filled circle. (Note that −∞ and ∞
always have a round bracket, not a square
bracket.)

• Be clear on what happens when an endpoint is outside an
interval, eg x > 0. The point x = 0 is not in the interval, but
every value greater than 0 is in the interval. So 0.5, 0.01,
0.000001 and 0.00000001 are all in the interval.

? ?

Question 2.5.5 Write each of the following intervals using
inequality signs, and then mark each one on a real line:

(1) (−∞, 0)

(2) [0, 5)

(3) (0, 5]
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2.6 Solving inequalities

• We know how to solve equations with an “=” sign.

• The key rule was: whatever you do to one side, you must
also do to the other side.

• We can also solve inequalities, which look like equations but
instead have signs like < or ≥.

• There are two major differences between equations and
inequalities:

– the answer to most inequalities is an interval, not a
single point; and

– the rules for manipulating inequalities are a bit different
to those for solving equations.
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Rules for solving inequalities.

1. The same quantity can be added to, or subtracted from,

both sides of the inequality.

2. Both sides of the inequality can be multiplied by, or divided

by, the same positive quantity.

3. If both sides are multiplied by, or divided by, the same

negative quantity, then the inequality must be reversed

(that is, < becomes >, > becomes <, and so on).

4. If a < b then b > a; if a > b then b < a.

If a ≤ b then b ≥ a; if a ≥ b then b ≤ a.

• Rules 1 and 2 are the same as for solving equations.

• Pay particular attention to Rules 3 and 4: the inequality sign
must be reversed when applying these rules!
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Example 2.6.1 Solve the inequality −3x+ 2 ≤ 6− x.

−3x+ 2 ≤ 6− x
so −3x+ 2 + x ≤ 6− x+ x

so −2x+ 2− 2 ≤ 6− 2

so −2x ≤ 4

so −2x÷−2 ≥ 4÷−2 (the inequality is reversed)

so x ≥ −2

? ?

Question 2.6.2 Find all x which satisfy 2x−4 > x+ 3. Write
your answer in interval format and mark it on the real line.

? ?

Question 2.6.3 Find all x which satisfy −2x ≤ x + 3. Write
your answer in interval format and mark it on the real line.

? ?

Question 2.6.4 Find all y which satisfy 3(y + 2) < 3y + 4
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2.7 Square roots

• We have previously seen square roots, written with a
√

sign. If a is a real number then we know that:

1.
√
a is only defined if a ≥ 0

2.
√
a×
√
a = a

3. if a > 0 then a has two square roots, one positive and one
negative.

• To avoid confusion,
√
a is usually taken to mean the positive

square root of a.

• To get the negative square root, write −
√
a.

The following rules allow us to simplify square roots.
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Important properties of square roots.

If a and b are real numbers with a ≥ 0 and b ≥ 0, then

(1)
√
a×
√
b =
√
a× b =

√
ab

(2)

√
a√
b

=
√
a

b

Example 2.7.1

1.
√

4×
√

4 =
√

4× 4 =
√

16 = 4 and
√

7×
√

7 = 7

2.
√

5×
√

20 =
√

5× 20 =
√

100 = 10

3.
√

4
9

=
√

4√
9

=
2
3

4. −
√

16 = −4
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Question 2.7.2 Simplify
√

8×
√

6√
16

• There are some common errors with square roots.

• Pay attention to the following facts; they each say that two
quantities are not equal.
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Non-properties of square roots.

(1)
√
a+
√
b 6=

√
a+ b

(2)
√
a−
√
b 6=

√
a− b

Example 2.7.3 Make sure you understand that:

√
2x×

√
3y =

√
6xy

but you cannot simplify

√
2x+

√
3y

? ?

Question 2.7.4 By letting a = 9 and b = 16, show that it is
not true that

√
a+
√
b =
√
a+ b.
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Surds

• Some square roots can be written exactly as fractions; that
is, they are rational numbers.

Example 2.7.5 The following square roots are rational:
√

4 = 2 =
2
1

√
4
9

=
√

4√
9

=
2
3

• Many square roots cannot be written exactly as fractions;
that is, they are irrational numbers.

• For example,
√

2,
√

5,
√

7 are all irrational, and there is no
way of writing them more simply.

• Irrational square roots are called surds.

• Sometimes, a surd can be written in a simpler form, by using
the properties of square roots. In particular:

(1)
√
a2 = a (for example,

√
16 =

√
42 = 4) and

(2)
√
a× a = a (for example,

√
2× 2 = 2).

• These rules let us ‘take things outside’ the square root.
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Simplifying square roots

Given a square root, we usually write it in simplest form by

trying to ‘take something outside’ the square root sign. This is

done via the following process:

• Factor the number inside the square root sign, looking for

– factors that are square numbers (eg 4, 9, 16, . . . ); or

– pairs of identical factors (if you don’t easily find a square

factor).

• Use rules (1) and (2) above to simplify.
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Example 2.7.6 Write
√

12 in simplest form.

Notice that 4 is a square number and that 12 = 4× 3. Then
√

12 =
√

4× 3 =
√

4×
√

3 = 2×
√

3 = 2
√

3

Alternatively,
√

12 =
√

2× 6 =
√

2× 2× 3 =
√

2× 2×
√

3 = 2×
√

3 = 2
√

3

? ?

Question 2.7.7 Simplify
√

20

Arithmetic on surds

• Surds can be involved in expressions. For example, 3 +
√

5 is
an expression involving a surd.

• Mathematical operations (such as addition, multiplication
and so on) can be performed on such expressions.

• Be careful to remember BEDMAS and the relevant
properties of square roots.

Example 2.7.8

(
√

2 + 5) + (
√

2− 6)−
√

2 =
√

2 +
√

2−
√

2 + 5− 6

=
√

2− 1
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Example 2.7.9 3
√

2× 5
√

6 + 10
√

3

= 15×
√

2×
√

6 + 10
√

3

= 15
√

12 + 10
√

3

= 15× 2
√

3 + 10
√

3

= 30
√

3 + 10
√

3

= 40
√

3

? ?

Question 2.7.10 Show that
√

2 +
√

2 +
√

2 =
√

18

? ?

Question 2.7.11 Simplify (
√

8−
√

2)(
√

2 +
√

6)
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2.8 Powers and Exponents

• On Page 26 we briefly encountered exponentiation.

• For example, 32 = 3× 3.

• In the expression 32, 3 is called the base and 2 is called the
power or exponent.

• There are various rules that allow us to simplify operations
involving powers. You must be familiar with these rules.

! !

�

�

�

�

Power Rule 1: Product of powers

If a, m and n are real numbers, then

am × an = am+n

Note that in this rule, the base must be the same in both
places on the LHS of the equals sign and on the RHS.

Example 2.8.1

• 22 × 23 = 22+3 = 25 = 32
You can see why the rule works:
22 × 23 = (2× 2)× (2× 2× 2) = 2× 2× 2× 2× 2 = 25

• y3 × y2 × y = y3+2+1 = y6

• We cannot simplify x3 × y2 as the first base x is not the
same as the second base y. We write it as x3y2.
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Question 2.8.2 Simplify each of

(a) 34 × 32 × 33

(b) x7 × x2 × y4 × x6

(c) 2n × 23

! !

�

�

�
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Power Rule 2: Dividing powers

If a is a non-zero real number and m and n are real numbers,

then

am ÷ an = am−n

Just as in Rule 1, the base must be the same in both places

on the LHS of the equals sign and on the RHS.

Example 2.8.3

• 35 ÷ 32 = 35−2 = 33 = 27
You can see why the rule works:

35 ÷ 32 =
3× 3× 3× 3× 3

3× 3
= 3× 3× 3 = 33

• p10 ÷ p6 = p10−6 = p4

? ?

Question 2.8.4 Simplify each of

(a) −712 ÷−75 ÷−73

(b) x4 ÷ x−4

(c) 3n+4 ÷ 3n+2
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Power Rule 3: Power equal to 0 or 1

If a is any non-zero real number then

a0 = 1 and a1 = a

Example 2.8.5

• 32 ÷ 32 = 1 and 32 ÷ 32 = 32−2 = 30. Hence 30 = 1

• x4 ÷ x3 =
x× x× x× x
x× x× x

= x and x4 ÷ x3 = x4−3 = x1.

Hence x1 = x

? ?

Question 2.8.6 Simplify each of

(a) (252 × (−0.14536)5)0

(b) x2 × x× x3 ÷ x5

(c) x2 × x0 + x3 × y0

! !
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Power Rule 4: Negative power

Let a be any non-zero real number and m be any real number,

then

a−m =
1
am

Note that the expression a−m has been rewritten as a fraction

and the power is now positive.
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Example 2.8.7

• 10−2 =
1

102
=

1
100

.

You can see why the rule works:

103 ÷ 105 =
10× 10× 10

10× 10× 10× 10× 10
=

1
10× 10

=
1

102
.

But 103 ÷ 105 = 103−5 = 10−2

Hence 10−2 =
1

102

• x−3 =
1
x3

• 1
5−2

=
52

1
= 25

? ?

Question 2.8.8 Simplify each of

(a) 2−1 × 10

(b) 7−2 × 14

(c) x5 × 1
x4

! !
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Power Rule 5: Fractional powers

Let a be a real number and m be a non-zero real number, then

a1/m = m√a

In particular, for m = 2 we have a1/2 =
√
a.

(For some values of m there are restrictions on allowed values

of a. For example, if m = 2 then a cannot be negative.)
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Example 2.8.9

• 91/2 =
√

9 = 3

You can see why the rule works:

91/2 × 91/2 = 91/2+1/2 = 91 = 9.

Hence 91/2 must be
√

9.

• (x1/2)2 = (
√
x)2 = x

• 71/3 × 71/3 × 71/3 = 7
1
3

+ 1
3

+ 1
3 = 71 = 7

? ?

Question 2.8.10 Simplify each of

(a) (32 × 41/2)1/2

(b) x−1/2 −
√
x

x
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Power Rule 6: Powers raised to powers

If a, b, m and n are real numbers (b 6= 0 in the fraction) then
(am)n = amn, (ab)n = anbn and

(a
b

)n
=
an

bn

Example 2.8.11

• (42)3 = 42×3 = 46

You can see why the rule works:

(42)3 = 42 × 42 × 42 = 42+2+2 = 42×3 = 46

• (x2y)2 = x2×2y1×2 = x4y2
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Question 2.8.12 Simplify each of

(a) (2
1
2 )2

(b) (x2y−4)−1/2

(c)
(
x2

y3

)−3

? ?

Question 2.8.13 Evaluate
23 × 41/2 × 361/2

811/4

(Hint: 811/4 = (811/2)1/2)

? ?

Question 2.8.14 Simplify x2y × y−2 × (xy)−1.
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Question 2.8.15 Simplify x2 ÷ (x2y−2)× (x2y)−2.
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Summary of the power laws.

Let a, b, m, and n be real numbers. Then

(1) am × an = am+n

(2) am ÷ an = am−n

(3) a0 = 1 (a 6= 0) and a1 = a

(4) a−m =
1
am

(a 6= 0)

(5) a1/m = m√a (m 6= 0)

(6) (am)n = amn , (ab)n = anbn and
(a
b

)n
=
an

bn
(Of course, b 6= 0 in the fraction)

• Note that Rules (1) and (2) only work when the base is the
same. We can simplify x2 × x3 to give x2+3 = x5, but we
cannot simplify x2 × y3.
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3
∑

notation

Why are we doing this?

• This section covers sigma notation.

• Sigma notation is a short-hand way of writing long
expressions involving addition.

• The notation is very important in probability and statistics.

• Anyone doing any economics statistics will need to use sigma
notation a lot.

• Topics we cover are:
– Introduction to sigma notation.

– Expanding sums.

– Reducing sums.

– Applications of sigma.
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3.1 Introduction to sigma notation

Consider the following expressions:

Example 3.1.1

1. 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +
15 + 16 + 17 + 18 + 19 + 20

2. x1 + x2 + x3 + x4 + x5 + . . .+ x498 + x499 + x500

• Each of these expressions involves adding together a large
number of terms.

• People often want to write very long sums, and it can be
time consuming to write them out in full.

• There is a shorthand way of writing such expressions, using
the Greek letter ‘capital sigma’, written

∑
.

• In general, sigma or summation notation is written

upper∑
lower

expression

where

– lower gives the lower bound or starting point of the sum,

– upper gives the upper bound or ending point of the sum;
and

– expression gives the thing to be added together.

• Lower usually looks like variable=value.

• Upper usually is an integer or letter.

• Expression usually involves the variable given in lower.
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Example 3.1.2 Here are three examples of sigma notation:∑
lower upper expression

5∑
i=1

i i = 1 5 i

2∑
i=−2

2i+ 4 i = −2 2 2i+ 4

100∑
i=1

2i i = 1 100 2i

• There are two things you need to be able to do with sigma
notation:

– Given an expression involving
∑

, expand it into a sum.

– Given an expanded sum, reduce it into an expression
involving

∑
.

3.2 Expanding sums

• The shorthand notation can be expanded into a sum via the
following process.
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Procedure for expanding a sum.

• Let the variable in lower equal the value in lower.

• While the value of the variable is ≤ upper:
– Take the given expression and replace each occurrence

of variable with its current value.

– Add the resulting expression to the expanded sum

– Add 1 to value of variable
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• Note: when expanding a sigma expression, you always add 1
to the variable at each step.

Example 3.2.1
6∑
i=1

i2 means “The sum of i2, from i = 1 to

i = 6.” To expand this sum:

First, i = 1, so i2 = 12. Add 1 to i, so i = 2.
Then i = 2, so i2 = 22. Add 1 to i, so i = 3.
Then i = 3, so i2 = 32. Add 1 to i, so i = 4.
Then i = 4, so i2 = 42. Add 1 to i, so i = 5.
Then i = 5, so i2 = 52. Add 1 to i, so i = 6.
Then i = 6, so i2 = 62. Add 1 to i, so i = 7.
Then i = 7, which is larger than upper, so stop.

Then we obtain the expanded sum by adding together all of
the terms obtained above.

So
6∑
i=1

i2 = 12 + 22 + 32 + 42 + 52 + 62

You can simplify this even further:
6∑
i=1

i2 = 12 +22 +32 +42 +52 +62 = 1+4+9+16+25+36 = 91

• So far, in all the examples involving sigma we have always
used the letter i as our variable.

• This doesn’t have to be the case. We can use any letter that
we like.
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Example 3.2.2 We saw that
6∑
i=1

i2=91. Changing i to a

different letter does not change the answer. So
6∑
j=1

j2 = 12 + · · ·+ 62 = 91 and

6∑
k=1

k2 = 12 + · · ·+ 62 = 91.

Example 3.2.3
4∑
r=2

r(r + 1) = 2(2 + 1) + 3(3 + 1) + 4(4 + 1)

= 2× 3 + 3× 4 + 4× 5 = 6 + 12 + 20 = 38

? ?

Question 3.2.4 Expand and simplify:

(1)
3∑
i=1

xi

(2)
2∑

j=−2

j

(3)
4∑
i=1

2 + 0i

(4)
4∑
i=1

2

? ?

Question 3.2.5 Solve
2∑
i=1

(2i+ 1)x = 16
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3.3 Reducing sums

When given an expanded sum, to reduce it into an expression
involving

∑
, we need to identify each of:

• the starting point (or lower bound) of the sum,

• the ending point (or upper bound) of the sum, and

• what each term in the sum has in common.

Note: sometimes the sum might not appear to have an upper
bound (usually denoted by “ + ... ”). This means that the sum
goes on forever, written as an upper bound of infinity (“∞”).

Example 3.3.1 Consider the following expanded sum and
corresponding sigma expression.

1 + 2 + 3 + 4 + 5 + 6 + 7 + . . . =
∞∑
i=1

i

? ?

Question 3.3.2 Write each of the following in sigma notation.

(1) y1 + y2 + y3 + y4 + y5

(2) −1 + 0 + 1 + 2 + 3 + 4

(3)
1
2

+
1
3

+
1
4

+
1
5

+
1
6

(4) 52 + 62 + 72 + 82 + 92 + ...

(5)
1
2

+
1
22

+
1
23

+
1
24

+ . . .+
1
2n

Always check your answer!
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So far it has been easy to see the lower bound, upper bound and
expression being summed. Sometimes it is more complicated.

Example 3.3.3 Consider a sum of even numbers:

2 + 4 + 6 + 8 + 10

As always, the variable must increase by 1 at each step. So we
can rewrite the expanded sum as:

2× 1 + 2× 2 + 2× 3 + 2× 4 + 2× 5

Thus, in sigma notation, 2 + 4 + 6 + 8 + 10 =
5∑
i=1

2i

• Any even number can be written as 2×(something).

• Any odd number can be written as 2×(something)+1.

Example 3.3.4 1 + 3 + 5 + 7 + 9 =
4∑
i=0

(2i+ 1)

? ?

Question 3.3.5 Write each of the following in sigma notation:

(1) 4 + 6 + 8 + 10 + 12 + 14 + ...

(2) 3 + 5 + 7 + . . .+ 29 + 31

(3) 10 + 20 + 30 + 40 + 50 + 60 + 70
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3.4 Applications of sigma.

Sigma is useful in many practical applications.

Example 3.4.1 Consider the problem of calculating how
many ancestors you have in total, going back n generations,
including yourself.

n description no. ancestors total
of in this ancestors

ancestor(s) generation
0 you 1 (= 20) 1
1 parents 2 (= 21) 3
2 grandparents 4 (= 22) 7
3 great grandparents 8 (= 23) 15
4 great great grandparents 16 (= 24) 31

An expression for finding the total number of ancestors that
you have (including yourself) is:

n∑
i=0

2i

? ?

Question 3.4.2 It can be proved that:
n∑
i=0

2i = 2n+1 − 1

Show that this formula is valid for n = 1 and for n = 4.
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Given a collection of data values (eg heights or incomes), people
often talk about the average or mean value of the data.

? ?

Question 3.4.3 Assume there are 5 pieces of data, labelled
x1, x2, x3, x4 and x5.

(1) Write an expression, using sigma, for finding the mean
value of this data.

(2) Given the following table of values, find the mean.

x1 x2 x3 x4 x5

3 6 5 1 10

(3) The mean mark for six students is 8. Five students receive
the marks: m1 = 8,m2 = 9,m3 = 9,m4 = 7 and m5 = 10.
Find the missing mark.
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4 Sets

Why are we doing this?

• This section covers a basic introduction to set theory.

• Set theory is very different to what we have just studied. It
is probably more intuitive and more interesting than our
previous work.

• Sets incorporate many ‘common sense’ concepts from
everyday life.

• Sets are used in many professions, such as:

– economists and statisticians use sets in probability;

– computer scientists use sets to identify objects or
processes which all satisfy certain properties; and

– biologists use sets to represent common characteristics of
individuals or populations.

• You need to know:

– basic definitions and various types of set notation;

– how to operate on sets; and

– how to visualise sets diagramatically.

• We will keep referring to concepts and notations from set
theory. In particular, Section 5 (Probability) is based heavily
on set theory.

• Topics in this section are:
– Introduction to sets.

– Operations on sets.

– Venn diagrams.
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4.1 Introduction to sets

• Previously we have dealt with individual numbers.

• Now we introduce a different structure, called a set.

• A set is a collection of objects or elements, enclosed in curly
braces, { }, separated by commas.

• Usually capital letters (eg A, B, S) represent sets, while
lower case letters (eg a, b, c, x, y) represent elements.

Example 4.1.1 Let A = {1, 2, x}. Then A is a set, containing
the elements 1, 2 and x.

• There are two common ways of specifying a set:

1. Explicitly write all elements in the set, separated by
commas and surrounded by { and }.

2. State a property shared by all elements of the set.

The notation is: A = {x | x has some property},
pronounced “A equals the set of all x such that x has
some property.”

Example 4.1.2 Here are two ways of specifying the same set:

A = {1, 2, 3, 4, 5}.
A = {x | x is a natural number and 1 ≤ x ≤ 5}.
(The second example says “A is the set of all x such that x is
a natural number and x is between 1 and 5”.)

• Sets are fairly easy, but there is a bit of notation and
terminology to remember.
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• If A is a set and a is an element of A, then we write a ∈ A.

• a ∈ A can be pronounced as “a belongs to A”, or “a is an
element of A”, or “a is a member of A”.

• If A is a set and b is not an element of A then we sometimes
write b 6∈ A.

• The order of elements within a set is irrelevant.

• Elements do not repeat within a set.

• Two sets A and B are equal if they both contain exactly the
same elements.

• A set with no elements is called the empty set, written
A = {} or A = ∅. (Note: ∅ is the Greek letter ‘phi’.)

Example 4.1.3 If A = {1, 2, 3, 4} then:
1. 1 ∈ A, 2 ∈ A but 5 6∈ A.

2. {2, 3, 4, 1} = {1, 3, 2, 4} = A.

3. {1, 1, 2, 2, 3, 3, 4} = {1, 2, 3, 3, 4, 4} = A.

? ?

Question 4.1.4 List the set S in each case:

1. S = {n | n ∈ N and n < 5}. (Recall that N is the set of
natural numbers.)

2. S = {x | x2 − 4 = 0}.

3. S is the set of factors of 12.
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? ?

Question 4.1.5 Mark the following sets on number lines:

(1) S1 = {1, 2, 3}.
(2) S2 = {x | x ∈ R and − 1 ≤ x ≤ 2}.

−3 − 2 − 1 0 1 2 3

−3 − 2 − 1 0 1 2 3

• Given two sets A and B, B is said to be a subset of A if
every element of B is also an element of A. (Note that there
may be some elements in A that are not in B.)

• If B is a subset of A then we write B ⊆ A.

Example 4.1.6 Remember that every natural number is an
integer, every integer is a rational number, and every rational
number is a real number. Hence

• N ⊆ Z ⊆ Q ⊆ R
• 0 ∈ Z but 0 6∈ N
• 0.5 ∈ Q but 0.5 6∈ Z
• π ∈ R but π 6∈ Q

Example 4.1.7 {1, 2} ⊆ {1, 2, 3}. {1} ⊆ {1, 2, 3}.

Example 4.1.8 Let A be any set. Then

1. ∅ ⊆ A. (Recall that ∅ is the emptyset.)

2. A ⊆ A.
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4.2 Operations on sets

Just as operations such as +, − can be performed on numbers,
we can define operations on sets.

! !

'

&

$

%

Operations on sets.

Let A and B be sets. Then:

1. the intersection of A and B, A ∩B, is defined by:

A ∩B = {x | x ∈ A and x ∈ B}

(“The set of elements which are common to both A and

B”)

2. the union of A and B, A ∪B, is defined by:

A ∪B = {x | x ∈ A or x ∈ B}

(“The set of all elements of A together with all elements

of B”, with no repeats.)

3. the set-difference of A and B, A \B, is defined by:

A \B = {x | x ∈ A but x 6∈ B}

(“The set of elements which are in A but not in B”)

Example 4.2.1 Let A = {1, 2, 3, 4} and B = {1, 4, 5, 7}.

A ∩B = {1, 4}.

A ∪B = {1, 2, 3, 4, 5, 7}.

A \B = {2, 3}.
B \A = {5, 7}.
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? ?

Question 4.2.2 Let A = {1, 2, 3, 4, 5}, B = {2, 4, 6, 8} and
C = {4, 5, 6}. List the elements of each of the following sets:

(1) A ∩B

(2) B ∪ C

(3) A \B

(4) A \ C

? ?

Question 4.2.3 Let A be the set of MATH1040 students, B
be the set of female MATH1040 students and C be the set
of MATH1040 students with long hair. Describe each of the
following sets in words:

(1) A \B

(2) B ∪ C

(3) B ∩ C

(4) B \ C
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? ?

Question 4.2.4 Let A and B be any sets. Find:

(1) A ∩ ∅

(2) A ∪ ∅

(3) (A ∪ ∅) ∩ ∅

(4) A \ ∅

• We can have operations on more than two sets.

• If there is any confusion about the order in which operations
should be performed then we use brackets.

Example 4.2.5 Let A = {1, 2, 3}, B = {2, 3, 4} and C =
{2, 4, 5}. Then

1. (A ∩B) ∩ C = {2, 3} ∩ {2, 4, 5} = {2}.
2. (A ∪B) ∪ C = {1, 2, 3, 4} ∪ {2, 4, 5} = {1, 2, 3, 4, 5}.
3. (A ∩B) \ C = {2, 3} \ {2, 4, 5} = {3}.

? ?

Question 4.2.6 Let A = {1, 2, 3, 4, 8}, B = {2, 4, 6, 7, 8} and
C = {1, 4, 5, 7, 8}. Find each of:

(1) A \ (B \ C)

(2) A ∪ (B ∩ C)
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4.3 Venn diagrams

• We can represent sets pictorially, using a Venn diagram.

• Sets are represented as circles, and the region within each
circle represents the contents of that set.

• Circles overlap if sets intersect, and the region of overlap
represents their intersection:

A B

• You need to be able to interpret different regions on a Venn
diagram, and write the elements of the sets on the diagram
in the correct regions.

? ?

Question 4.3.1 On the following Venn diagrams identify each
of the regions A ∪B, A ∩B, A \B and B \A.

BABABABA

? ?

Question 4.3.2 Let A = {1, 2, 3, 4, 5} and B = {2, 4, 6}.

(1) Mark the sets A and B on a Venn diagram.

(2) Use the Venn diagram to identify the elements of each of
the following sets:

(a) A ∩B
(b) A ∪B
(c) A \B
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• Venn diagrams can also be used with more than two sets.

• Take great care to identify correctly each region on the
diagram.

? ?

Question 4.3.3 Shade the region which corresponds to each
given expression, on the Venn diagrams below.

(1) A ∩B (2) A ∩B ∩ C
(3) A ∪B (4) A ∪B ∪ C
(5) (A ∩B) ∪ C (6) (A \B) \ C

(6)

(4)

(2)

(5)

(3)

(1)

A B

C

A B

C

A B

C

A B

C

A B

C

A B

C
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5 Probability

Why are we doing this?

• Probability is an important branch of mathematics.

• It is very important in everyday life, and in your later study.

• If you do any economics statistics, then you’ll spend a lot of
time on probability, in much more detail than you’ll see here.

• Be careful when studying this material: probability can seem
very easy when you start it, but it gets much harder very
quickly.

• Set theory and summation notation are important for
probability: make sure you are familiar with that material.

• Of course, probability can be used to study Lotto and other
games of chance.

• (Prior to Semester 1 2005 we spent very little time on
probability. The amount of material we cover has now been
increased, as it is heavily used in many other courses)

• (Prior to Semester 1 2006 we covered probability much later
in the course, so it was not examined on the midsemester
exam; from 2006 onwards it will be.)

• Topics in this section are:

– Introduction to probability.

– Inclusion/exclusion.

– Conditional probability.

– Gold Lotto.
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5.1 Introduction to probability

• In English: given a number of possible outcomes, probability
is concerned with the chance or likelihood of a particular
identified outcome occurring.

• A probability of 1 means that the outcome is certain (it is
guaranteed to happen).

• A probability of 0 means it’s certain that it won’t happen.

• Hence the probability of any event is always a number
between 0 and 1.

! !
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Important probability definitions,

• The set of all possible outcomes is called the sample space.

• A subset of the sample space is called an event.

• Assuming that all outcomes are equally likely, the

probability p of a particular event is given by:

p =
number of ways in which that event can occur

total number of elements in sample space(
=

number of “favourable” outcomes

total number of possible outcomes

)

• We assume that each experiment is “fair” (so each outcome
is equally likely: eg coins and dice are not biased)

• We often use coins, dice or cards to illustrate probability.

• If A is an event then we often write “Prob(A)” to mean the
probability that A occurs.
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Example 5.1.1 Coin tossing: Let H denote a tossed coin
coming up as a head, and T denote a tossed coin coming up
as a tail. Assume the coin is fair (so each outcome is equally
likely).

1 toss Set of all possible outcomes = sample space =

{H,T}.

Clearly, Prob(1 head) = 1/2. Prob(1 tail) = 1/2.

2 tosses Set of all possible outcomes = sample space =

{HH,HT, TH, TT}

What is the probability of getting one H and one T (in either
order)?

The event of one H and one T occurs in each of the outcomes:
HT or TH.
Thus the identified event occurs in 2 possible outcomes.
So Prob(one H and one T ) = 2/4 = 1/2.

3 tosses Set of all possible outcomes = sample space =

{HHH,HHT,HTH, THH,HTT, THT, TTH, TTT}.

Prob(at least 2 heads) = 4/8 = 1/2
Prob(precisely 2 heads) = 3/8
Prob(precisely 1 head) = 3/8
Prob(precisely 0 heads) = Prob(precisely 3 heads) = 1/8
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? ?

Question 5.1.2 An experiment involves rolling two fair dice
and observing the numbers which are shown. Find the proba-
bility that:

(1) Both dice roll a 6?

(2) At least one die rolls a 6?

(3) Neither die rolls a 6?

(4) Both numbers are even?

(5) Both dice show the same number?

Answer: First list the sample space; each event is given as a
pair of numbers, being the values shown on the two dice.

1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 3,4 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
5,1 5,2 5,3 5,4 5,5 5,6
6,1 6,2 6,3 6,4 6,5 6,6

(1)

(2)

(3)

(4)

(5)
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Sometimes the sample space is more complicated, but you can
still list every element in the sample space and count them.

? ?

Question 5.1.3 Roll two dice, and let t be the total obtained
by adding the scores. If t = 9, roll again until t 6= 9. Find the
probability that:

(1) t is even?

(2) t ≥ 8?

(3) t < 8?

Answer: First list the sample space. Each event shows the
numbers on the two dice separated by a comma, then a colon,
then value of t. We know that t 6= 9, so the sample space is:

1, 1 : 2 1, 2 : 3 1, 3 : 4 1, 4 : 5 1, 5 : 6 1, 6 : 7
2, 1 : 3 2, 2 : 4 2, 3 : 5 2, 4 : 6 2, 5 : 7 2, 6 : 8
3, 1 : 4 3, 2 : 5 3, 3 : 6 3, 4 : 7 3, 5 : 8
4, 1 : 5 4, 2 : 6 4, 3 : 7 4, 4 : 8 4, 6 : 10
5, 1 : 6 5, 2 : 7 5, 3 : 8 5, 5 : 10 5, 6 : 11
6, 1 : 7 6, 2 : 8 6, 4 : 10 6, 5 : 11 6, 6 : 12

Note that the sample space no longer has 36 events in it, so the
denominators in the probabilities will not be 36.

(1)

(2)

(3)
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Sometimes it may be hard to count all occurrences of some event.
The following easy fact might help:

! !
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!

Simple probability fact.

Let A be any event. It is guaranteed that either A happens, or

A does not happen. Hence

Prob(A happens) + Prob(A doesn’t happen) = 1

Rearranging this equation gives

Prob(A happens) = 1− Prob(A doesn’t happen)

Example 5.1.4 Toss a coin 3 times.

• Prob(at least one head) + Prob(no heads) = 1.

• Thus Prob(at least one head) = 1 − Prob(no heads)

= 1− Prob(TTT ) = 1− 1
8

=
7
8

? ?

Question 5.1.5 A random integer is chosen between 1 and
500 inclusive. What is the probability that the number is not
a multiple of 100?
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We can easily relate probability to sets and Venn diagrams:

• Write the sample space as a set, say S.

• Identify outcomes as sets.

• If A and B are events then:

– A ∩B means both events A and B occur;

– A ∪B means event A occurs or event B occurs;

– A \B means event A occurs but event B does not occur.

Example 5.1.6 Roll a fair, 6-sided die.

The sample space is given by S = {1, 2, 3, 4, 5, 6}.

Let A be the event “the number rolled is even”.
Then A = {2, 4, 6}.

Let B be the event “the number rolled is less than 3”.
Then B = {1, 2}.

Let C be the event “the number rolled is both even and less
than 3”.
Then C = A ∩B = {2}.

To calculate probabilities:

• write elements in the correct places on a Venn diagram

• count the number of elements in each place

• divide counts by the size of the sample space to get
probability

Often, instead of writing all of the elements on the diagram, you
instead simply write the number of elements in each region.
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? ?

Question 5.1.7 In a MATH1040 class:
• 15 students hate maths;

• 18 students pass;

• 13 students both hate maths and pass; and

• every student hates maths or passes (or both).

(1) Write this on a Venn diagram.

(2) How many students are there in the class?

(3) What is the probability that a randomly chosen student
both hates maths and fails?

5.2 Principle of inclusion/exclusion

Let A and B be events. Recall that A ∪B means that event A
occurs or event B occurs (or both), and A ∩B means that both
A and B occur.

The principle of inclusion/exclusion relates the sizes of sets to
the sizes of their intersection and union.

! !
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Principle of inclusion/exclusion.

If A and B are events then

Prob(A ∪B) = Prob(A) + Prob(B)− Prob(A ∩B).
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Question 5.2.1 Use Venn diagrams to justify the principle of
inclusion/exclusion.

Example 5.2.2 A fair die is rolled; what is the probability
that the number is even or is divisible by 3?

(1) Calculate the answer directly.

The sample space S = {1, 2, 3, 4, 5, 6} has 6 events.

Numbers which are even or divisible by 3 are 2, 3, 4, 6.

Hence the probability that the number is even or divisible
by 3 is 4/6.

(2) Use the principle of inclusion/exclusion.
Let A be the event ‘number is even’ and B be the event
‘number is divisible by 3’.

Clearly, P (A) = 1/2 and P (B) = 1/3.

Also, P (A ∩ B) = 1/6 (as the only number which is even
and divisible by 3 is 6). Then

P (A ∪B) = P (A) + P (B)− P (A ∩B)

=
1
2

+
1
3
− 1

6

=
4
6

MATH1040, Summer 2007/8. Section 5.2. Page 94



? ?

Question 5.2.3 Out of 100 MATH1040 students:
• 83 students hate maths, of whom 37 are female;

• 17 students like maths, of whom 12 are female.

Assuming everyone is male or female, and either likes or hates
maths, find the probability that a randomly chosen person:

(1) is female or hates MATH1040?

(2) is male or likes MATH1040?

! !
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Mutually exclusive events.

If A ∩B = ∅ (so A and B cannot both happen together), then

A and B are said to be mutually exclusive.

If A and B are mutually exclusive, then Prob(A ∩B) = 0.

Hence Prob(A ∪B) = Prob(A) + Prob(B).

If A1, A2, . . . An are all mutually exclusive events (so at most

one of the events can occur), then

Prob(A1∪A2∪...∪An) = Prob(A1)+Prob(A2)+. . .+Prob(An)
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Percentages.

We have used fractions or decimal numbers between 0 and 1

to represent probabilities. Another common way of writing a

probability is using percentages. To convert from a percentage

to a decimal, divide the percentage by 100. For example, a

probability of 50% is equal to a probability of 0.5.

? ?

Question 5.2.4 Assume every MATH1040 student receives
exactly one grade for the course. Previous observation shows
that students have a 15% chance of receiving a grade of 7, a
15% chance of a 6, 20% chance of 5, 35% of 4, and 5% for each
of 3, 2 and 1. If 4 or more is a pass, find the probability that
a randomly chosen student will:

(1) obtain a grade of 1 or 2?

(2) pass the course?
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5.3 Conditional probability

• Sometimes there is some extra information known about the
event that occurs.

• This might reduce the size of the relevant sample space.

Example 5.3.1 A die is rolled. Find the probability that the
number showing is 5, given that the number is odd.

The sample space is S = {1, 2, 3, 4, 5, 6}, of size 6. Hence the
probability that the number is 5 equals 1/6.

If we know that the number is odd, then we know it must
be in a new, smaller sample space S1 = {1, 3, 5}. Hence the
probability that it is 5, given that we know it is odd, is 1/3.
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Conditional probability.

Let A and B be events in sample space S with Prob(B) >
0. The conditional probability that A occurs given that B
occurs is denoted Prob(A|B). A formula for calculating this

probability is:

Prob(A|B) =
Prob(A ∩B)
Prob(B)

.

? ?

Question 5.3.2 Use Venn diagrams to justify the rule for con-
ditional probability.
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Question 5.3.3 Referring to Question 5.2.4, find the proba-
bility that a randomly chosen student will:

(1) obtain a grade of 7?

(2) obtain a grade of 7 given that they pass the course?

(3) pass the course, given that their grade is an even number?

Sometimes is is useful to rearrange the formula for conditional
probability:
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Product rule for probability.

If A and B are events, then

Prob(A∩B) = Prob(A)×Prob(B|A) = Prob(B)×Prob(A|B)
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• Often, two or more events have no impact on each other: one
event occurring does not make the other event more or less
likely to occur. Such events are said to be independent.
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Independent events.

Two events A and B are independent if and only if

Prob(A|B) = Prob(A) and Prob(B|A) = Prob(B)

That is, the probability of A happening, given that B has hap-

pened, is identical to the probability that A happens.

• We will only cover events that are independent, and it is
usually easy to see whether two events are independent:

– examples of independent events include tossing a coin
twice, rolling two dice, or drawing one card out of each of
two packs.

– examples of non-independent events include drawing 2
cards from one pack without replacement or rolling a
biased die twice.

If two or more events are independent then the product rule for
probability becomes simpler, and easily allows us to calculate the
probability that they all occur:
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Product rule for independent events.

If A and B are independent events, then the product rule be-

comes

Prob(A ∩B) = Prob(A)× Prob(B)

If A1, A2, . . . An are all independent events, then

Prob(A1∩A2∩...∩An) = Prob(A1)×Prob(A2)×. . .×Prob(An)

MATH1040, Summer 2007/8. Section 5.3. Page 99



? ?

Question 5.3.4 A coin is tossed and a die is rolled. Find the
probability of obtaining a 6 on the die and a head on the coin.
Check your answer by counting outcomes.

? ?

Question 5.3.5 A coin is tossed 6 times. Find probability of:

(1) 6 heads in a row.

(2) exactly 5 heads in consecutive tosses.

? ?

Question 5.3.6 Four people each secretly and randomly
choose a natural number between 1 and 10 inclusive. What
is the probability that they all choose the same number?
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We can now combine all of the rules for probability to solve
questions without listing the sample space.

? ?

Question 5.3.7 (same as Question 5.1.2.) Roll two dice.
Without listing the sample space, find the probability that:

(1) Both dice roll a 6?

(2) At least one die rolls a 6?

(3) Neither die rolls a 6?

(4) Both numbers are even?

(5) Both dice show the same number?
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Question 5.3.8 A famous problem in probability: the Monty
Hall problem. You have won a TV game show, and take home
whatever is behind one of three identical doors; behind one
there is $100,000, behind each of the others there is a goat.
You choose a door, and the host, who knows where the money
is, opens one of the other two doors, exposing a goat. The host
then gives you the option of changing your door choice if you
want to.
Should you change, or not, or doesn’t it matter? (Note: assume
you want money more than you want the goat.)
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5.4 Gold Lotto

Wouldn’t it be nice....

• Let’s talk about gold lotto.

• This is not examinable, but is probably interesting.

• It’s also a useful demonstration of probability.

• Somewhere I saw a description of gold lotto as a “weekly tax
on ignorance”: let’s see why.

• The TV ads say “Would a million dollars make a
difference?”, and “wouldn’t it be nice to win a million”. But
they don’t talk about your chances of winning, and what you
expect to get back even if you do win.

• To win Division 1 in Gold Lotto, you need to correctly
choose six numbers out of a possible 45.

• It can be shown that there are 8,145,060 different
combinations of 6 numbers out of 45.

• Thus, each time you enter, there is exactly one combination
of numbers which will result in you winning Division 1.

• We now know that if you play a single game, the probability
of that game winning is

1
8, 145, 060

= 0.000000122774.

• This is a very small number!

• Most people seem to think that they’ll win Division 1
sometime, it’s just a matter of waiting until they do. Maybe
not this year or next year, but sometime.
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• Let’s put this chance of winning in perspective.

1. If you have 100 games every week, you’d expect to win
Division 1 once every 1500 years.

2. If you have 150,000 games every week, you’d expect to
win once per year. Of course, your entry fees would be
$60,000 per week.

3. Each year, about 25 Queenslanders win Division 1. Each
year, about 300 Queenslanders die in road accidents. Very
roughly, you are about 10 times more likely to die in a car
crash than you are to win Division 1.

4. If you have 75 games per week, then your chances of
winning Division 1 in a year are about 1 in 2000. If you
are a male aged between 15 and 24, then you have about
a 2 in 2000 chance of dying in a given year. If you are a
female in that age bracket, you have about a 1 in 2000
chance of dying in a given year.

• If you try to “beat the system” and put in lots of entries,
then for every $1,000,000 you spend on entry fees, you expect
on average to win back about $500,000. That is, your
expected payouts are only about 50% of what you spend.
The government keeps about 50% in tax.

• Every combination of six numbers is equally likely to occur.
If you select the numbers 1, 2, 3, 4, 5, 6 then you have exactly
the same chance of winning as does any other combination.

• There is nothing you can do to increase your chances of your
number selection coming up.

• Even if you happen to win Division 1, the expected prize is
about $250,000. Certainly much less than $1,000,000.
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• Powerball is much worse: you need to choose 5 numbers
correctly out of 45, plus correctly pick the “powerball”

• Thus you need to choose 5 numbers correctly out of 45, plus
one number out of a different group of 45.

• Using some probability, it can be shown that if you play a
single game, the probability of that game winning is

1
54, 979, 200

= 0.0000000181887

• this is a very very small number!

• We can put this into perspective.

1. If you have 100 games every week, you’d expect to win
Division 1 once every 10,000 years.

2. If you have about 1,000,000 games every week, you’d
expect to win once per year.

3. Your odds of winning powerball are almost exactly equal
to this:
– the organisers of an olympic marathon select a secret

point somewhere on the course.
– they then give you a pin, and tell you to go and stick

the pin somewhere on the course.
– If the place you stick the pin exactly matches their

secret point, then you have won Division 1.

• Have you noticed that in many weeks, there is a powerball
“jackpot”?

• This means that (once again) no-one happened to win.

• The TV ads sell this as a good thing!
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So why do people play?

• Because:
– people don’t know the true probability.

– the advertisements are slick, sexy and appealing.

– everyone wants to win a million dollars.

– “someone has to win; why not me”?

– the cost of entry is low, so why not try?

– there is an entertainment value.

– we all believe that somehow, we are inherently luckier than others:

that something bad “won’t happen to me” but something good will.

Is there nothing I can do to improve my chances?

• All combinations of numbers are equally likely. You cannot
do anything to increase your chances of winning, besides
playing more games.

• However, there is something you can do: try to ensure that if
your selection of numbers comes up, then you are the only
person who wins Division 1. This will ensure that you don’t
share your payout with anyone else.

• Thus you are just as likely (or unlikely) to win as anyone
else, but if you do happen to win, you’ll get a big payout.

• The way to do this is to choose numbers which no-one else
will choose, or at least are unlikely to be chosen.

• Lots of people choose birthdates: try numbers larger than 31.
People think patterns are more unlikely to come up (we
know this is false). So choose a pattern of numbers, all larger
than 31.

• If I ever was weak enough to enter Lotto, I’d choose the
numbers 33, 34, 35, 36, 37, 38.
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6 Straight lines and their graphs

Why are we doing this?

• This section covers several related topics: graph drawing,
straight lines and distance.

• Graphs are very important for visualising the shape and
behaviour of data sets and functions, and are used to
illustrate relationships between various quantities.

• We will come back to graph drawing throughout semester,
particularly for quadratics, exponentials and trigonometry.

• Linear (straight line) relationships are very common in
representing and modelling real situations, especially in
business and economics, engineering, genetics and biology.

• We will see how to graph linear relationships, and will study
their general form and see how to recognise a linear
relationship from its equation.

• We also study straight-line distance between two points and
Pythagoras’ theorem.

• Topics in this section are:
– Introduction to graphs.

– Sketching equations.

– Linear graphs.

– Standard form for the equations of straight lines.

– Lines parallel to the axes.

– Finding gradients.

– Finding the equation of a line.

– Parallel and perpendicular lines.

– Measuring distance.

MATH1040, Summer 2007/8. Section 6.0. Page 107



6.1 Introduction to graphs

• Graphs are used to show relationships between quantities.
You should be familiar with the following aspects of graphs:

– the horizontal axis (or x-axis) which is negative to the left
and positive to the right;

– the vertical axis (or y-axis) which is negative in the
downwards direction and positive upwards;

– the origin, where the axes intersect.

• Data values are written as ordered pairs or coordinates

• The order of the values is important: for a point (a, b), x
takes the value a and y takes the value b.

? ?

Question 6.1.1 Plot the following data points:
(x, y) = (2, 3), (1, 4), (0,−2), (−3, 4), (−1,−1)

y

x

• Often the variables being graphed are not x and y. For
example, we may be looking at:

distance travelled and time taken; or
number and its square root; or
cost and number of pigs bought.

• Relabel the axes accordingly. For example, we might say
“time t is on the x-axis, and distance d is on the y-axis”.
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• The value of one variable depends on the value of the other
one. The first variable is called the dependent variable,
and the other is called the independent variable.

• By convention, the independent variable is always
represented by the x-axis, and the dependent variable is
always represented by the y-axis.

• It can sometimes be difficult identifying the dependent and
independent variables, but something in the question will
usually help you to work it out.

• For example, if a question asks you to plot the distance
travelled against time spent travelling, distance is dependent
on time.

6.2 Sketching equations

• You will often be asked to sketch (or plot, or draw) the graph
of a given equation. Use the following procedure.

! !

'
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Sketching a graph.

Given an equation, sketch its graph by repeating these steps

until you have enough points to be confident that you recognise

the correct shape of the graph.

• Choose a value for one of the variables x or y.

• Substitute the value of that variable into the equation, giv-

ing a value for the other variable.

• Plot each point (x, y) on some axes.

Sketch the graph by joining appropriate points.
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Example 6.2.1 Plot the graph of y = x+ 1.

First we find some points on the graph, by choosing values for
x and calculating values for y. (Note that the points plotted
on a graph don’t have to be integers; they can also be decimals
or fractions. Usually when finding points we only use integers,
for ease of calculation and plotting.)

When x = 0, y = x+ 1 = 0 + 1 = 1

When x = 1, y = x+ 1 = 1 + 1 = 2

When x = −2, y = x+ 1 = −2 + 1 = −1

When x = 1.5, y = x+ 1 = 1.5 + 1 = 2.5

When x = −0.5, y = x+ 1 = −0.5 + 1 = 0.5

When x = −4, y = x+ 1 = −4 + 1 = −3

It is often convenient to write these values in a table.

x 0 1 −2 2.5 −0.5 −4
y 1 2 −1 3.5 0.5 −3

Finally we plot these points on a set of axes, and it’s clear how
the graph will look, so we don’t need any more points.

−4 −3 −2 −1 4

2

3

4

−1

−2

1

−3

−4

1 2 3
x

y
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• In the previous example, x and y could take on positive and
negative values.

• Sometimes, particularly in practical problems, there might
be some restrictions on values of x and y. For example, x
might have to always be positive.

? ?

Question 6.2.2 A carwash costs $10 and petrol costs $1 per
litre. Assume you buy x litres of petrol and have a car wash.
Let y be the total cost. First create a table of values, then
sketch a graph of y. Find an equation for y.

x 0 5 10 15 20 25
y

y

x

The amount of money you spend is $10 for the wash, plus x
dollars for x litres of petrol. Hence the equation is

y = 10 + x.
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6.3 Straight line (linear) graphs

• In Example 6.2.1 and Question 6.2.2 we calculated 6 points
in order to plot the graph.

• The graphs each formed a straight line, and you might have
noticed that we didn’t need so many points to correctly
identify the line.

! !
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Plotting a straight line.

Given two points (x1, y1) and (x2, y2), there is a unique line

which passes through both points.

Equivalently, given the equation of a straight line, only two

points on the line are needed in order to plot the graph.

• Thus, if you know an equation is a straight line, you
only need to find two points on the line.

• You can choose any two points on the line (as long as they
are different).

• Some points may be easier to calculate than other points.

• Common choices for the two points are:

– The point where x = 0. This is called the y-intercept, and
is the point where the graph crosses the y-axis.

– The point where y = 0. This is called the x-intercept, and
is the point where the graph crosses the x-axis.

• (Of course, you cannot use these point(s) if the values are
not allowed; in Question 6.2.2, there was no point on the
graph for which y = 0, as the total cost was at least $10.)
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? ?

Question 6.3.1 Use the x and y-intercepts to sketch the graph
of 2x+ 3y = 6 (you may assume this forms a straight line).

x

y

y

x

• In Example 6.2.1, every additional litre of petrol purchased
(the independent variable) added the same amount to the
total cost (the dependent variable).

• We saw that the graph was a straight line. Another name for
a straight line relationship is a linear relationship.

• In linear relationships, each time the independent variable
changes by a certain fixed amount (say a), the dependent
variable always changes by another fixed amount (say b).

• We saw above that if we know an equation is linear then we
only need two points to plot its graph.

• There is an easy way to tell if an equation is linear.

! !

#

"

 

!

Identifying whether a given equation is linear.
• Simplify the equation as much as possible.

• The equation is linear if it contains at most:

– one term involving x (which may be zero)

– one term involving y (which may be zero)

– one constant term (which may be zero)
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• There can be no other terms, so no terms involving xy, x2,
y2,
√
x (etc).

• The highest power of x must be 1 (recall that x1 = x) and
the highest power of y must also be 1.

• As stated, some of these terms can be zero (in which case
they will be missing).

Example 6.3.2 Which of the following equations are linear?
(a) 3x+ 2y − 4 = x+ 2.

Simplify the equation, so 3x+ 2y− 4 = x+ 2, so 2x+
2y − 6 = 0. Hence there is a term involving x, a term
involving y and a constant term, so the equation is linear.

(b) 3(x+ y) = x(y + 1).

When we simplify the equation, we get 3x+ 3y = xy + x,
so 2x+3y = xy, which includes a term involving xy. Hence
this is not a linear equation.

(c) 3(x+ 1) = y + 3.

When we simplify the equation, we get 3x+3 = y+3, so
3x = y, which includes a term involving x and a term in-
volving y (and no constant term), so the equation is linear.

Graph of (a) Graph of (b) Graph of (c)
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Question 6.3.3 Which of the following equations are linear?
If an equation is not linear, state why.

(1) 2x− 6y = 18

(2) x(2 + y) = 4

(3) 2x+
√
x = 4 + y

(4) x = 4

(5) x = 2y(2 + y)

(6) y = 1

(7) (x+ 1)2 = y + x2

6.4 Standard form for the equations of straight
lines

• We have just seen that the equation of a straight line has at
most an x term, a y term and a constant term, some of
which may be zero.

• There is a useful standard way of writing linear equations.

! !
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Writing straight line equations in standard form.

If a straight line equation has a y term then the standard way

of writing the equation is y = mx+ c.

If there is no y term then the standard way of writing the

equation is x = c.
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Example 6.4.1 Write the straight line 6x + 2y − 8 = 0 in
standard form, and identify the values of m and c.

We need to rewrite the equation as y = mx+ c, where m and
c are some constants.

6x+ 2y − 8 = 0

so 2y = −6x+ 8

so y = −3x+ 4

Hence m = −3 and c = 4.

Example 6.4.2 Write the straight line 2(y − 4) = 2x − 8 in
standard form, and identify the values of m and c.

We need to rewrite the equation as y = mx+ c, where m and
c are some constants.

2(y − 4) = 2x− 8

so 2y − 8 = 2x− 8

so 2y = 2x

so y = x

Hence m = 1 and c = 0.

Example 6.4.3 Write the straight line 2(x + y) = 2y + 4 in
standard form.

2(x+ y) = 2y + 4

so 2x+ 2y = 2y + 4

so 2x = 4

so x = 2

(Note that here there is no y term.)
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• There are three important features of straight line equations
and their graphs:

– The y-intercept of the equation is the value of y when
x = 0. On the graph, it is value of y when the line crosses
the y-axis.

– The x-intercept of the equation is the value of x when
y = 0. On the graph, it is the value of x when the line
crosses the x-axis.

– The gradient of the graph is its slope.

• These features are shown on the following diagram.

• The two triangles on that figure (in dashed lines) represent
the slope or gradient of the line.

x

y

y−intercept

x−intercept

y=x+1

• Slope (of a line, or a road, or a hill) is a measurement of how
quickly or steeply the height is changing.

• Formally, the slope of a line is the change in its y value
between two points, divided by its change in x value between
the two points.

• (Sometimes this is called “rise over run”.)
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• There are important relationships between the equation of a
straight line in standard form and the graph of the line.
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Gradient, y-intercept and standard form.

If a straight line is written in the form y = mx + c, then the

gradient of the line equals m and its y-intercept equals c.

• It’s not hard to see why those relationships hold.

• The y-intercept of the equation is the value of y when x = 0.

– Let y = mx+ c.

– Substitute x = 0 into the equation, giving y = m× 0 + c,
so y = c.

– Hence the y-intercept is c.

• The gradient is a measure of how much y changes compared
to how much x changes.

– Let y = mx+ c.

– In this equation, if x changes by a certain amount then y

changes by m times that amount.

– Hence the gradient is m.

• Now we know that m is the gradient, we see that:

! !
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Interpreting gradients.
Let y = mx+ c.

• If m is positive, then as x gets bigger, y must also get

bigger. Hence the line goes upwards to the right;

• If m is negative, then as x gets bigger, y must get smaller.

Hence the line goes downwards to the right; and

• If m equals zero, then as x gets bigger, y does not change.

Hence the line is horizontal.
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• Given a straight line equation in standard form it’s easy to
quickly find the gradient and y-intercept, so it’s very easy to
get a rough idea of what the graph looks like.

• If m is positive the line goes upwards to the right, and larger
values of m will go up more steeply.

• If m is negative the line goes downwards to the right, and
larger negative values of m will go down more steeply.

• If c is:

– positive, the graph crosses the y-axis above the x-axis.

– negative, the graph crosses the y-axis below the x-axis.

– zero, the graph crosses the y-axis at the origin.

Example 6.4.4 Draw a rough sketch of each of:
(a) y = 2x− 4 Hence m = 2 and c = −4.
(b) y = 4x− 4 Hence m = 4 and c = −4.
(c) y = 8x Hence m = 8 and c = 0.
(d) y = 2x+ 4 Hence m = 2 and c = 4.
(e) y = −2x+ 4 Hence m = −2 and c = 4.
(f) y = −x Hence m = −1 and c = 0.
(g) y = 3 Hence m = 0 and c = 3.
(g) y = −4 Hence m = 0 and c = −4.

(a) (b) (c) (d)

(e) (f) (g) (h)
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6.5 Lines parallel to the axes

• In Example 6.4.4, the last two graphs were horizontal, or
parallel to the x-axis.

• There is another special type of line: those which are parallel
to the y-axis, so are vertical.

• Such lines do not have equations that look like y = mx+ c.
Their general form is x = c.
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Lines parallel to the axes.

• Horizontal lines have equations of the form y = c, where c

is a constant. All such lines have gradient equal to 0.

• Vertical lines have equations of the form x = c, where c

is a constant. All such lines have no gradient (this does

not mean gradient equal to 0, it means no gradient), or

sometimes they are said to have infinite gradient.

? ?

Question 6.5.1 Sketch y = 5 for x between −4 and 4.

Sketch the cost y of eating in an all-you-can-eat restaurant
against the amount you eat x, where the meal costs $12.

y

x

y

x
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Question 6.5.2 (a) Sketch x = −3 for y between −8 and 8.

(b) When hiring a car for $90 for a day, you can drive an
unlimited distance without paying an additional fee. Sketch a
graph of the distance you travel y as a function of the amount
you spend on car hire x.

y

x

y

x

6.6 Finding gradients

• Given two points, it is often useful to find the gradient of the
line passing through those points.

• (Of course, we have already seen that if the line is vertical
then its gradient is undefined.)

• Let the two points be A = (x1, y1) and B = (x2, y2).

• The gradient of the line passing through A and B is the
change in y values between A and B, divided by the change
in x values between A and B.

• This is shown in the diagram on the next page.
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(x  , y  )22

(x  , y  )11

B

A

change in x

change in y

• The y-coordinate of B is y2 and the y-coordinate of A is y1,
so the change in y values between A and B equals y2 − y1.

• The x-coordinate of B is x2 and the x-coordinate of A is x1,
so the change in x values between A and B equals x2 − x1.
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Finding the gradient.

Given two points (x1, y1) and (x2, y2), the gradient of the line

passing through these points is given by

m =
change in y

change in x
=

y2 − y1

x2 − x1
.

Example 6.6.1 Find the gradient of the line passing through
the points (1, 0) and (2, 4). Show that it doesn’t matter which
point is chosen as (x1, y1) and which as (x2, y2).

Let (x1, y1) = (1, 0) and (x2, y2) = (2, 4).

Then m =
y2 − y1

x2 − x1
=

4− 0
2− 1

=
4
1

= 4.

Let (x1, y1) = (2, 4) and (x2, y2) = (1, 0).

Then m =
y2 − y1

x2 − x1
=

0− 4
1− 2

=
−4
−1

= 4.
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Example 6.6.2 Find the gradient of the line passing through
the points (4, 2) and (8, 2).

Let (x1, y1) = (4, 2) and (x2, y2) = (8, 2).

Then m =
y2 − y1

x2 − x1
=

2− 2
8− 4

=
0
4

= 0.

Therefore the gradient is 0, so the line
passing through (4, 2) and (8, 2) is horizontal.

• In the previous example, the change in y values was 0; this
means the line is horizontal.

• However, if the change in x values was 0 then the gradient
formula would be dividing by zero, which is not allowed.

• Think about the points in this case: they must form a
vertical line.

• Therefore the gradient is undefined.

Example 6.6.3 Find the gradient of the line passing through
the points (−2,−2) and (−2, 3).

Let (x1, y1) = (−2,−2) and (x2, y2) = (−2, 3). Then

Then m =
y2 − y1

x2 − x1
=

3− (−2)
−2− (−2)

=
5
0
.

Therefore m is undefined. That is, the
line passing through (−2,−2) and (−2, 3)
is vertical.
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Question 6.6.4 Find the gradient of a straight line passing
through the points (−1, 1) and (3,−3).

6.7 Finding the equation of a straight line

• There are a number of ways of finding the equation of a
straight line, depending on what information is available.

• Note that you need to find both the gradient m and the
y-intercept c.

• We can see what happens if just one of the gradient (left) or
y-intercept (right) is known. In each case, an infinite number
of lines is possible.

x

y

x

y
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Finding the equation of the line when given a point on
the line and the gradient of the line.

• If you are given a point on the line and the gradient of the
line then this information defines a unique line.

• In the diagram: the lines with short dashes all have gradient
m, and the lines with long dashes all pass through (x1, y1).
Only the solid line has both properties.

1 1(x  , y  )

gradient  m

! !
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Finding the equation given a point and the gradient.

To find the equation of a line given a point (x1, y1) on the line

and the gradient m:

• Write the value of m in the standard equation y = mx+ c.

• Substitute the values of x1 and y1 into this equation and

rearrange the equation, giving the value for c.

Example 6.7.1 Find the equation of the line with gradient 3
which passes through the point (1, 5).

We know m = 3 and (1, 5) is on the
line. The line has equation y = 3x+ c,
and hence 5 = 3× 1 + c, so c = 2.

Hence the equation of the line is
y = 3x+ 2.
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Question 6.7.2 Find the equation of the line with gradient
−3 which passes through the point (1, 2).

? ?

Question 6.7.3 Find the equation of the line with gradient 0
which passes through the point (2,−2), and roughly sketch the
graph.

Finding the equation of the line when given two points
on the line.

• Assume you are given two points on the line.

• This information defines a unique line. The lines with short
dashes all pass through (x1, y1) and the lines with long
dashes all pass through (x2, y2). Only the solid line passes
through both points.

22(x  , y  )

(x  , y  )11
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Finding the equation given two points.

To find the equation of a line given two points (x1, y1) and

(x2, y2) on the line:

• Calculate the gradient using the formula

m =
change in y

change in x
=

y2 − y1

x2 − x1
.

• Write the value of m in the standard equation y = mx+ c.

• Substitute the values of x1 and y1 (or x2 and y2) into this

equation and rearrange, giving the value for c.

• Of course, after the first step is done, we now know the
gradient of the line and a point on the line (actually, we
know two points, but we only need one).

• We then proceed exactly as before.

Example 6.7.4 Find the equation of the line which passes
through the points (0, 1) and (2, 5).

Let (x1, y1) = (0, 1) and (x2, y2) = (2, 5). Then

m =
y2 − y1

x2 − x1
=

5− 1
2− 0

= 2

Then we proceed as before. Substituting for m gives y = 2x+c.
Choose either point to substitute into the equation, but in this
case (0, 1) is likely to be easier. Hence

1 = 2× 0 + c, so c = 1.

Hence the equation of the line is
y = 2x+ 1.
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Question 6.7.5 Find the equation of the line which passes
through (2, 0) and (−1, 6).

? ?

Question 6.7.6 Find the equation of the line which passes
through (0, 1) and (3, 1).

? ?

Question 6.7.7 Find the equation of the line which passes
through (2, 4) and (2,−3).

Consider the last two questions! If both y values are equal, the
equation will always be y = constant. If both x values are
equal, the equation will always be x = constant.
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6.8 Parallel and perpendicular lines

• Given two lines, there are sometimes special relationships
between their gradients.
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Parallel lines.

Two lines are said to be parallel if their gradients are equal or

both are vertical.

Example 6.8.1 Here are three pairs of parallel lines.
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Perpendicular lines.

Two lines are said to be perpendicular if they intersect in a

right-angle. Either:

• one line must be parallel to the x-axis and the other to the

y-axis; or

• neither line is parallel to the axes, and if one line has gra-

dient m, the other line has gradient −1/m. (Another way

of saying this is that the product of their gradients must

equal −1.)

Example 6.8.2 Here are three pairs of perpendicular lines.
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Example 6.8.3 Find the equation of the line parallel to
2y + 4x− 6 = 0, passing through the point (−1, 1).

Rewriting the equation in standard form gives y = −2x+ 3, so
the original line has gradient m = −2.

Hence any line parallel to this must also have gradient
m = −2, so must have equation y = −2x+ c.

Substitute (−1, 1) into the equation to find c.
So 1 = −2×−1 + c, so c = −1.

Hence the equation is y = −2x− 1.

Example 6.8.4 Find the gradient of any line perpendicular
to 2y + 4x− 6 = 0.

From Example 6.8.3 the original line has gradient m = −2, so
any perpendicular line must have gradient 1/2.

? ?

Question 6.8.5 Using Example 6.8.4, find the equation of the
line perpendicular to 2y + 4x− 6 = 0 and passing through the
point (2,−2).
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6.9 Measuring distance

• Next we cover a very important result: Pythagoras’ theorem.

• This is sometimes called the most important theorem in the
whole of mathematics.

• It forms the entire basis of trigonometry and geometry.

• It is used to measure distances in 2 and 3 dimensions, so
underpins engineering, architecture, geography and physics.

• It has been known for thousands of years.
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Pythagoras’ Theorem.

In a right-angled triangle with sides of length a and b and

hypotenuse (that is, the longest side) of length c, we have

c2 = a2 + b2 or equivalently c =
√
a2 + b2

bc

a

Example 6.9.1 In a right-angled triangle with hypotenuse of
length 5 and another side of length 3, find the length of the
remaining side.

We have c2 = a2 +b2, so 52 = 32 +b2, so 25 = 9+b2, so b2 = 16,
so b = 4.

Hence the unknown side is of length 4.
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Question 6.9.2 Wilfred starts walking at a point A.
He walks due east for 10

√
2 km, then due north for 10

√
7 km,

ending up at point B. How far is B from A, in a straight line?

Distance between two points, (x1, y1) and (x2, y2).

• We can easily restate Pythagoras’ Theorem to calculate the
distance between any two points.

• Let the points be A = (x1, y1) and B = (x2, y2).

• Draw a triangle with A and B forming the endpoints of the
hypotenuse, and find the lengths of the other sides.

B

A

x distance

C

y distance

12(x  , y  )1

(x  , y  )22

(x  , y  )1

• The vertical side BC has length equal to the difference in y

values, which is y2 − y1.

• The horizontal side CA has length equal to the difference in
x values, which is x2 − x1.

MATH1040, Summer 2007/8. Section 6.9. Page 132



• From Pythagoras’ Theorem, the length h of the hypotenuse
can be found by noting that

h2 = (CA)2 + (BC)2, so

h2 = (x2 − x1)2 + (y2 − y1)2.

Hence we have the following result:

! !
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Distance formula.

The distance d between two points (x1, y1) and (x2, y2) is

d =
√

(x2 − x1)2 + (y2 − y1)2 =
√

(x1 − x2)2 + (y1 − y2)2

• Of course, the distance from the point (x1, y1) to (x2, y2)
must be the same as the distance from (x2, y2) to (x1, y1).

• This can be seen from the above distance formula.

Example 6.9.3 Find the distance between (2, 3) and (−2, 6).

Let (x1, y1) = (2, 3) and (x2, y2) = (−2, 6). Then

d =
√

(2− (−2))2 + (3− 6)2 =
√

42 + (−3)2

=
√

16 + 9 =
√

25 = 5.

? ?

Question 6.9.4 Find the distance between (
√

6, 3
√

3) and
(0,
√

3), expressing your answer as a surd in simplest form.
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7 Intersecting lines; simultaneous

equations

Why are we doing this?

• This section looks at methods of finding the simultaneous
solution(s) to a pair of equations.

• Each of the equations will be a straight line.

• Effectively, we are concerned with the possible intersection of
a pair of lines.

• We will see two ways of finding the intersection: substitution
and elimination.

• We only consider pairs of equations with two unknown
variables. More generally, there can be many equations with
many unknown variables.

• Computers were originally developed mostly for solving very
large systems of equations.

• The techniques we learn can be applied to much larger
systems.

• Topics in this section are:

– Intersection of lines.

– Solving simultaneous equations.
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7.1 Intersection of lines

• Consider two lines, y = m1x+ c1 and y = m2x+ c2.

• Every point on the first line satisfies the first equation, and
every point on the second line satisfies the second equation.

• Here we are interested in any point(s) in common to both
lines.

• Such points must satisfy both equations at the same time, so
they are called simultaneous solutions to the equations.

• Any points which are in common to both lines will appear as
points of intersection if the lines are drawn on a graph.

• If both lines are drawn on the same set of axes, then one of
the following must happen:

– the lines must intersect at precisely one point; or

– the lines are parallel and do not intersect at all; or

– the lines must intersect at an infinite number of points (so
they must be superimposed, or the same line).

• These three possibilities are shown in the following figure.
(In the right-hand graph, two lines are superimposed.)

• It is not possible for straight lines to intersect in any other
number of points (such as 2 points, or 20 points).
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• There are many examples of simultaneous equations which
need to be solved in everyday life.

• We will concentrate on problems with two equations, both of
which are straight lines.

• In general there may be more than two equations, and they
may not be straight lines.
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Simultaneous solutions.

Given the equations of two lines:

• If they intersect in precisely one point, say (xi, yi), then

(xi, yi) satisfies both equations at the same time, and is

called the simultaneous solution to the equations.

• If the lines do not intersect at all, then they must be

parallel. We say that there is no simultaneous solution
to the given equations.

• If the lines intersect in an infinite number of points, then

they must be the same line. We say that there is an

infinite number of simultaneous solutions.

7.2 Solving simultaneous equations

• Given a set of equations, solving them simultaneously
involves finding all simultaneous solutions to the equations.

• We will encounter two similar techniques, called substitution
and elimination.

• When solving simultaneous equations, it is common to label
the equations with numbers in brackets, such as (1).
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Solving simultaneous equations using substitution.
• Given two equations, choose one equation and isolate one

of the variables to the left-hand side.

• Substitute the expression for that variable into the other

equation (thus eliminating the identified variable from the

other equation).

• Solve the resulting equation for the remaining variable.

• Substitute the value of that variable into either original

equation, giving the value for the other variable.

Example 7.2.1 Solve 2x− y = −4 (1)

x+ 2y = 28 (2)

Answer: Rewrite (1) with y on the left-hand side, so

y = 2x+ 4 (3)

Now substitute for y in equation (2), giving

x+ 2(2x+ 4) = 28 (4)

Now (4) is an equation only involving x which we can solve:

x+ 2(2x+ 4) = 28

⇒ x+ 4x+ 8 = 28

⇒ 5x = 20

⇒ x = 4

Thus we know that x = 4, so we can substitute x = 4 into
either (1) or (2). Let’s choose (1), so:

2x− y = −4 ⇒ 2× 4− y = −4 ⇒ y = 12
continued...
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Example 7.2.1 (continued)
Thus the solution is x = 4 and y = 12; that is, (4, 12).

Finally, we can check that this is the correct solution, by substi-
tuting these values of x and y into both of the original equations
(1) and (2).

From (1), 2x− y = −4. Let x = 4
and y = 12, so 2x− y = 2(4)− 12 = −4
as required.

From (2), x+ 2y = 28. Let x = 4
and y = 12, so x+ 2y = 4 + 24 = 28
as required.

Hence the solution is correct.

? ?

Question 7.2.2 Solve the following simultaneous equations
using substitution.

3x− 2y = 10

x+ 3y = 7
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Solving simultaneous equations using elimination.

• Given two equations, add a multiple of one equation to a

multiple of the other equation, thus eliminating one of the

variables.

• Solve the resulting equation for the remaining variable.

• Substitute the value of that variable into either original

equation, giving the value for the remaining variable.

Example 7.2.3 Solve x− 3y = −1 (1)

3x+ 2y = 8 (2)

Let’s eliminate y. Multiply both sides of equation (1) by 2
and multiply both sides of equation (2) by 3. Then

2x− 6y = −2 (3)

9x+ 6y = 24 (4)

Now add the left-hand sides of equations (3) and (4), and the
right-hand sides of equations (3) and (4):

2x− 6y + 9x+ 6y = −2 + 24

⇒ 11x+ 0y = 22

Hence 11x = 22, so x = 2. Substitute this back into (1) or (2)
to get y. In (1):

x− 3y = −1

⇒ 2− 3y = −1

⇒ 2 = 3y − 1

⇒ 3 = 3y

⇒ y = 1

Hence the answer is (x, y) = (2, 1). (Check it!)
MATH1040, Summer 2007/8. Section 7.2. Page 139



• Take time to understand why elimination works (refer to the
previous example if you like).

• When both sides of an equation are multiplied by the same
number, the equation is effectively unchanged.

• (Recall that as long as we do the same thing to each side, the
equation stays the same.)

• If we have two equations of the form LHS1 = RHS1 and
LHS2 = RHS2 (where LHS means left-hand side and RHS

means right-hand side), then it must be the case that
LHS1 + LHS2 = RHS1 +RHS2.

• The only tricky step with elimination is working out by what
constant each equation should be multiplied.

• Remember that when you add the equations, you want one
of the variables to be eliminated.

• Hence you need to choose your constants so that the
coefficients of one of the variables will cancel when the
equations are added.

• In the previous example, the coefficients of y were −3 and 2.
When these are multiplied by 2 and 3 respectively, the new
coefficients became −6 and 6, which cancel.

• You can choose any useful number(s) as your constants
(except 0).

• The constants will be different for each equation.

• The constants can be positive or negative.

• The constants can be equal to 1 if you like (in which case the
equation remains unchanged).

MATH1040, Summer 2007/8. Section 7.2. Page 140



? ?

Question 7.2.4 Use elimination to solve the simultaneous
equations

3x+ 4y = 14

2x− 3y = −2

• In general, you can choose either substitution or elimination
to solve your equations.

• If it is easy to rewrite either equation as x = . . . or y = . . .

then it will be easier to use substitution.

• If you cannot rewrite either equation like that, then
elimination will be easier.

• Earlier, we saw that simultaneous equations always have
either one solution, or no solutions (parallel lines), or an
infinite number of solutions (identical lines).

• The following examples show what happens when there are
no solutions or an infinite number of solutions.
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Example 7.2.5 Solve the simultaneous equations

3x− 2y = 4 (1)

−9x+ 6y = −12 (2)

Answer: Multiply (1) by 3, giving

9x− 6y = 12 (3)

and then add (2) to (3), giving

−9x+ 6y + 9x− 6y = −12 + 12, so

0 = 0

The final statement (0 = 0) is always true.

This means that there is an infinite number of solutions to the
given equations. Any point which satisfies the first equation
also satisfies the second equation.

Graphically, any point on the first line is also on the second, so
the lines are identical.

(On the following diagram, the lines are superimposed.)
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Example 7.2.6 Solve the simultaneous equations

2x− y = 3 (1)

−4x+ 2y = −5 (2)

Answer: Multiply (1) by 2, giving

4x− 2y = 6 (3)

and then add (2) to (3), giving

−4x+ 2y + 4x− 2y = −5 + 6, so

0 = 1

The final statement is never true (that is, whatever values are
chosen for x and y, the equations lead to a statement that is
false).

This means that there is no solution to the given equations.

Graphically, the two lines do not intersect: they are parallel.
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8 Functions

Why are we doing this?

• This section gives an introduction to functions and function
notation.

• Most mathematics involves expressing concepts and
relationships using functions.

• The notation is not too hard, but many find it quite
confusing at first.

• In particular, many people find domain and range to be
difficult.

• You must be familiar with functions and their notation: we
will use it very heavily for much of the rest of semester.

• It will also be used extensively in any maths work you do in
business or economics, engineering and information
technology, genetics and biology.

• Topics in this section are:

– Functions and function notation.

– Domain and range.

– Composition of functions.
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8.1 Functions and function notation

• We have seen equations like y = 3x+ 4.

• Given a value of x, we can easily substitute the value of x
into the equation to calculate y.

• There is a more formal way of writing this, using functions.
A function specifies a rule by which an input is converted
to a unique output.

• We have already encountered many functions (although we
did not call them functions). For example:

– the function y = x2 takes the value of x as its input, and
the output is equal to x× x.

– absolute value of x, written |x|, again takes a value x as
its input, and the output is equal the distance of x from 0
(so is always positive).

• Functions are given names like f , g or h.

Example 8.1.1 Here are three examples of functions:

• f(x) = x2 (pronounced “f of x equals x squared”) is a
function, called f . It takes an input x, and converts it to
an output equal to x2.

• g(x) = |x| (pronounced “g of x equals the absolute value of
x”) is a function, called g. It takes an input x, and converts
it to an output equal to |x|.

• h(x) =
√
x (pronounced “h of x equals the square root of

x”) is a function, called h. It takes an input x, and converts
it to an output equal to

√
x.
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• Functions are always written like those in Example 8.1.1.

• The name of the function is given on the left, followed by a
letter in brackets, followed by an equals sign, followed by an
expression that (usually) involves the letter.

• The expression shows the output value to which the input is
converted by the function.

• A function is sometimes likened to a ‘magic box’ that
converts an input value to an output value by following a
given rule.

Example 8.1.2 Let f(x) = 2x, so f is a function that doubles
its input. Some input and output values are:

2

−1

−10

1.5

0 0

4

−2

3

f (x)

inputs
outputs

−20

• The function f(x) is represented by the box.

• f converts each input value (on the left) to a unique output
value (on the right).

• For example:
– when the input value equals −1,
f gives output 2×−1 = −2.

– when the input value equals 1.5,
f gives output 2× 1.5 = 3.
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Question 8.1.3 Define the given functions:

(1) f is a function that multiplies its input by 5.

(2) g is a function that doubles its input and adds 3.

(3) h is a function that makes its input negative.

(4) f1 is a function that leaves its input unchanged.

(5) f2 is a function that changes its input to 4.

• Given a function f(x) = x2, the thing that confuses many
people is the exact meaning of the x in f(x).

• The x is simply a symbol to help illustrate the definition and
action of the function. It means “whatever is used as the
input to f”.

• If f(x) = x2, then the notation means that whatever is
used as the input to f must be squared.

• The input value is represented by x, but it could be
anything.

• The action of the function is given by the expression x2.

Example 8.1.4 Let f(x) = x2. Then:

f(3) = 32 = 9 f(0) = 02 = 0

f(−1) = (−1)2 = 1 f(100) = 1002 = 10000

f(0.5) = 0.52 = 0.25 f(−10) = (−10)2 = 100
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• In the previous example we substituted numbers into f .

• Compare the next example with the previous one.

Example 8.1.5 Let f(x) = x2. Then:

f(a) = a2 f(xy) = (xy)2 = x2y2

f(3a) = (3a)2 = 9a2 f(
√
a) = (

√
a)2 = a

f(x+ 2) = (x+ 2)2 = (x+ 2)(x+ 2) = x2 + 4x+ 4

• Another thing to understand is that the notation f(x) = x2

means exactly the same thing as f(a) = a2 or f(t) = t2.

• That is, the x is simply a convenient mathematical way of
representing the input.

• (We have seem this before. If you think back to sigma

notation,
4∑
i=1

i is exactly the same as
4∑
j=1

j. The variables i

and j were only used to represent the action of the sum. In
functions, the x only represents the action of the function.)

Example 8.1.6 Understand the following:

• If f(x) = 2x then f(4) = 2× 4 = 8.

• If f(a) = 2a then f(4) = 2× 4 = 8.

• If f(a) = 2a+ 3 then f(4) = 2× 4 + 3 = 11.

• If g(t) = t2 + 1 then g(3) = 32 + 1 = 10.

• If f(x) = 2x then f(5a) = 2× (5a) = 10a.

• If f(x) = 2x+ 3t then f(4) = 2× 4 + 3t = 8 + 3t.

• If f(t) = 2x+ 3t then f(4) = 2x+ 3× 4 = 2x+ 12.
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Question 8.1.7 Let g(x) = x2 + 2x.
Find each of g(3), g(−1) and g(a).

? ?

Question 8.1.8 Let f(x) =
√
x, h(x) = 4 and v(t) = 4 + 3t.

(a) Find f(9), f(4) and f(0).

(b) Find h(0), h(−2) and h(100).

(c) Find v(0), v(10) and v(−a).

• Functions can be plotted as graphs.

• Given a function f(x) = . . . , x is the independent variable
and is shown on the horizontal axis.

• f(x) is the dependent variable, and is shown on the vertical
axis.

• Sometimes this is written as y = f(x).

8.2 Domain and range

• Given a function f , it is sometimes useful to think about:

– what are all the values that could possibly be used as a
valid input to f?; and

– what are all the values that could possibly arise as an
output from f?
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• Some functions can take any number as an input value.

• Some functions can have any number as a possible output
value.

• Other functions have restrictions on what values can be
input to the function, and/or what values can possibly occur
as outputs from the function.
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Domain and range.

Given a function f , the entire set of numbers which can be used

as valid inputs to f is called the domain of f .

Given a function f , the entire set of numbers which can possibly

arise as output values from f is called the range of f .

• Thus the domain is the set of all possible x values that can
be used as inputs, and the range is the set of all possible y
values that arise as outputs.

• The domain and range of a function are often specified in
interval format.

• Examples 8.2.1 and 8.2.2 and Question 8.2.3 cover domain
and range. In each case a function is given, followed by

(1) a table containing a few input values and the
corresponding output value;

(2) a graph of the function;

(3) a diagram of the domain and range of the function; and

(4) the domain and range of the function given in interval
format.
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Example 8.2.1 Let f(x) = 3x.
(1)

−2 → f(x) → −6
inputs 0 → f(x) → 0 outputs

2 → f(x) → 6

(2)

0-2-4

f(x)

15

10

5

0

-5

-10

-15

x

42

(3)

2 6

−1

−10

1.5

domain range

−30

−3

4.5

0 0
f (x)

(4) The function f(x) can take any number as its input, so its
domain is (−∞,∞). Similarly, f(x) can give any number
as its output, so its range is (−∞,∞).
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Example 8.2.2 Let g(x) = x2.
(1)

−2 → g(x) → 4
inputs 0 → g(x) → 0 outputs

2 → g(x) → 4

(2)

−5

20

g(x)
10

0

x

50

(3)

2

−1

−10

1.5

domain range

0

0

4
1

100

2.25

−1

−8
−2.5

−100

NOT in range

g(x)

(4) The function g(x) can take any number as its input, so its
domain is (−∞,∞). However, g(x) can never output a
negative number, so its range is [0,∞).
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Question 8.2.3 Let h(x) =
√
x.

(1)
0 → h(x) → 0

inputs 4 → h(x) → 2 outputs
9 → h(x) → 3

(2)

h(x)
2

5

x

2015

4

10

0

0

(3) Fill in the missing sections: range and NOT in domain.

domain range

−1

−8
−2.5

−100

h(x)

4
1

0

100

NOT in rangeNOT in domain

(4) Find the domain and range of h(x).
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• Many people have trouble with domain and range.

• You will be given various functions and asked to find their
domain and range.

• Here are some tips for finding the domain of a function.

• Ask yourself: does the function have any square roots or
fractions? If so then note:

– the domain cannot contain any value which gives a
negative inside a square root sign (you can’t find the
square root of a negative number).

– the domain cannot contain any value which gives 0 as the
denominator of a fraction (as you can’t divide by 0).

• Sometimes it is easier to look at what values are not valid
inputs, and the domain is the set of all other values.

• Here are some tips for finding the range of a function.

– Is the domain restricted? If so it may restrict the range.

– If there are any expressions involving square roots,
absolute values or squaring (eg x2) in the equation, then
remember that:
∗ by convention, the square root of every number is

always positive.
∗ the absolute value of every number is always positive.
∗ every number squared is always 0 or positive.

Example 8.2.4 Let f(x) =
√
x+ 1.

We can only find the square root of a number that is ≥ 0.
Hence x+ 1 ≥ 0, so x ≥ −1. Hence the domain is [−1,∞).

Square root is always ≥ 0, so the range is [0,∞).
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? ?

Question 8.2.5 Find the domain and range of the following:

Function domain range

(1) f1(x) = x+ 1

(2) f2(x) = x2

(3) f3(x) = −x2

(4) f4(x) = x2 + 3

(5) f5(x) = |x|

(6) f6(x) =
√
−x

(7) f7(x) =
1
x

(too hard)

(8) f8(x) =
1

x2 − 1
(too hard)

(9) f9(x) = 4
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• It is important to understand the relationship between a
function’s domain/range and its graph.

• The domain is all possible values that can be used as inputs
to the function, so corresponds to x values. If you draw the
graph, then the graph

– should exist at every x point in the domain; and

– should not exist at any x point not in the domain.

• Similarly, the range is all possible values that can arise as
outputs from the function, so corresponds to y values. If you
draw the graph, then the graph

– should exist at every y point in the range; and

– should not exist at any y point not in the range.

Example 8.2.6 The graphs of f2 (left) and f3 (right) from
Question 8.2.5 are shown below.
• For f2(x) = x2: the domain was (−∞,∞), and the graph

exists for every value of x; the range was [0,∞), and the
graph only exists for y ≥ 0.

• For f3(x) = −x2: the domain was (−∞,∞), and the
graph exists for every value of x; the range was (−∞, 0],
and the graph only exists for y ≤ 0.
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x

–16

–14
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–4
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0
–4 –3 –2 –1 1 2 3 4

x

f2(x) f3(x)
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Example 8.2.7 The graphs of f4 (left) and f5 (right) from
Question 8.2.5 are shown below.
• For f4(x) = x2 + 3: the domain was (−∞,∞), and the

graph exists for every value of x; the range was [3,∞),
and the graph only exists for y ≥ 3.

• For f5(x) = |x|: the domain was (−∞,∞), and the graph
exists for every value of x; the range was [0,−∞), and
the graph only exists for y ≥ 0.

0

1

2

3

4

5

6

7

8

y

–4 –3 –2 –1 1 2 3 4

x

0

1

2

3

4

–4 –3 –2 –1 1 2 3 4

x

f4(x) f5(x)

Example 8.2.8 The graphs of f6 (left) and f8 (right) from
Question 8.2.5 are shown below.
• For f6(x) =

√
−x: the domain was (−∞, 0], and the

graph only exists for x ≤ 0; the range was [0,∞), and
the graph only exists for y ≥ 0.

• For f8(x) = 1
x2−1

: the domain was (−∞,−1) ∪ (−1, 1) ∪
(1,∞), and the graph exists for every value of x apart from
±1.
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8.3 Composition of functions

• Given a function f(x), we can substitute numbers and letters
into f . Sometimes we want to substitute other functions of x
into f .

? ?

Question 8.3.1 If f(x) = 2x, find each of:
(1) f(4)

(2) f(3b)

(3) f(3x)

(4) f(x2)

(5) f(x+ h)

Compare the last three questions with the next three!

? ?

Question 8.3.2 Let f(x) = 2x, u(x) = 3x, v(x) = x2 and
w(x) = x+ h. Find each of
(1) f(u(x))

(2) f(v(x))

(3) f(w(x))

! !

'

&

$

%

Composition of functions.
Given two functions f(x) and g(x), we can talk about:

• the composition of f with g, f(g(x)), which is obtained by

substituting g(x) into f .

• the composition of g with f , g(f(x)), which is obtained by

substituting f(x) into g.

Note that in general, f(g(x)) is not the same as g(f(x)).
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• Composition of functions is sometimes called function of a
function.

Example 8.3.3 Let f(x) = 2x and g(x) = x+ 1. Find
(a) f(g(3)) (b) f(g(x)) (c) g(f(x))

Answers:

(a) g(3) = 3 + 1 = 4
Hence f(g(3)) = f(4) = 2× 4 = 8

(b) g(x) = x+ 1
Hence f(g(x)) = f(x+ 1) = 2× (x+ 1) = 2x+ 2

(c) f(x) = 2x
Hence g(f(x)) = g(2x) = 2x+ 1

? ?

Question 8.3.4 Let f(x) = 3x2 and g(x) = x− 1. Find
(a) f(g(0)) (b) f(g(1)) (c) f(g(x))
(d) g(f(0)) (e) g(f(1)) (f) g(f(x))
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9 Quadratic equations and polynomials

Why are we doing this?

• We have seen linear equations, with a single solution.

• Now we look at equations with higher powers of x, and
(possibly) multiple solutions.

• We’ll see how to solve quadratics (using a formula or
factorisation), and the shape of the graphs of some
polynomials.

• Polynomials are used extensively in real-world modelling,
particularly by engineers, biologists and economists.

• We’ll use them for much of the rest of this course. Be
familiar with the notation, and in particular be able to solve
quadratic equations.

• Topics in this section are:

– Introduction to polynomials.

– Quadratics.

– Shapes of some polynomial functions.

– Solving quadratics using the Quadratic Formula.

– Solving quadratics by factoring.

– Applications of quadratics.
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9.1 Introduction to polynomials

• We’ve seen equations of straight lines: y = mx+ c.

• Using function notation, we can write this equation as
f(x) = mx+ c.

• In any linear equation, the highest power of x is 1.

• What if our function involves terms with x raised to integer
powers larger than 1?

• For example, P (x) = x2 − 3x+ 2 includes an x2 term.

! !

'

&

$

%

Polynomials

Any function which involves a variable raised only to powers

that are positive integers is called a polynomial.

The degree of a polynomial P (x) is the highest power of x in

P (x).

A polynomial of degree 1 is called linear, a polynomial of de-

gree 2 is called a quadratic and a polynomial of degree 3 is

called a cubic.

Example 9.1.1 Examples of polynomials include:

• Linear: 2x− 1, −3x+ 7

• Quadratic: x2 + 2x+ 1, 2x2 + 1, (x− 2)(x+ 1)

• Cubic: x3 + 2x2 + 2x+ 1, x3 − 4

• Degree 4: 7x4 − 2x3 + x2 − 8x+ 4

• Degree 5: −6x5 − 7x
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• All polynomials can be written as functions. For example, if
y = x2 + 2x+ 1 then we could write f(x) = x2 + 2x+ 1.

• All polynomials involve a variable, usually x. However, the
variable can be t, or something else.

• Given a value for x, you can evaluate the polynomial at that
x value simply by substituting x into the function.

• Some terminology is important:

Example 9.1.2 In the polynomial 5x3 − 4x2 + 3,
the “x2 term” is −4x2,
the coefficient of x3 is 5,
the coefficient of x is 0,
and the constant term is 3.

• We have already covered linear equations in detail. Here we
concentrate on quadratics.

9.2 Quadratics

• Quadratics are polynomials in which the highest power of
the variable is 2.

• The general form of a quadratic is: f(x) = ax2 + bx+ c,
where a, b and c are constants and x is the variable.

• You need to be able to sketch graphs of quadratics.

• This can be done in the same way as for straight lines:
calculate some points on the graph, mark them on some
axes, and ‘join the dots’.

• Make sure you find enough points to be clear how the graph
looks. For quadratics, two points will not be enough.
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? ?

Question 9.2.1 Sketch p(x) = x2 − 3x+ 2.

(Note: we could rewrite p(x) as p(x) = (x− 1)(x− 2).)

x −1 0 1 2 3 4

p(x) 6 2 0 0 2 6
y

x

? ?

Question 9.2.2 Sketch the graph of p(x) = x2 + 1

(Note: y is never zero or negative, for any x value.)

x −3 −2 −1 0 1 2 3

p(x) 10 5 2 1 2 5 10
y

x
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• Compare the two graphs. The first graph crosses the x-axis
in two places; the second does not cross at all.

• The places where the graph of a polynomial crosses the
x-axis are important.

! !

�

�

�

�

Roots (solutions) of an equation.

The roots or solutions of an equation are those values of x

for which y = 0; thus they are the points at which the graph

crosses the x axis.

Solving an equation involves finding all its roots.

• Shortly we’ll see how to solve quadratic equations.

9.3 Shapes of some polynomial functions

• You need to be familiar with the general shapes of the
graphs of linear and quadratic polynomials.

Example 9.3.1 Consider a linear equation y = ax+b. (note:
previously we have written this as y = mx+ c; this means the
same thing, we just give different names to the constants.)

When the gradient a is positive, the line goes up to the right;
see the left-hand axes. When the gradient a is negative, the
line goes down to the right; see the middle axes. Lines with
equation x = c are vertical; see the right-hand axes.

x

y

x

yy

x
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All quadratic equations have the same general shape, called a
parabola. Parabolas are symmetrical.

Example 9.3.2 Consider a quadratic y = ax2 + bx + c, in
which a > 0. (We might have b = 0 or c = 0.)

If a is positive in y = ax2 + bx+ c then the graph looks like a
‘valley’. On the left there are two roots, in the middle there is
one root (or 2 equal roots), and on the right there are no roots.

y y y

x

Example 9.3.3 Consider a quadratic y = ax2 + bx + c, in
which a < 0. (We might have b = 0 or c = 0.)

If a is negative in y = ax2 + bx + c then the graph looks like
a ‘hill’. On the left there are two roots, in the middle there is
one root (or 2 equal roots), and on the right there are no roots.

y y y

x x x
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In the equation y = ax2 + bx+ c,

• the size of a shows how “opened out” the curve is. (See the
top diagram; larger values of a are steeper.)

• c is the y-intercept, just as for linear functions. (See the
bottom diagram.)
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9.4 Solving quadratics using the Quadratic formula

• Recall that a solution or root of a polynomial is a value of x
which gives y = 0, and that solving an equation involves
finding all of its roots.

• It is easy to solve a linear equation y = mx+ c: just
substitute y = 0 into the equation, and solve directly for x.

• Solving a quadratic y = ax2 + bx+ c is harder:

– There may be 0, 1 or 2 roots.

– Where do we start? We can let y = 0, but what next?

• There is an important formula for solving quadratics.

! !

�

�

�

�

Quadratic formula.

The roots or solutions of the quadratic ax2 + bx + c = 0 are

given by
x =

−b±
√
b2 − 4ac

2a

• We have seen that a quadratic has 0, 1 or 2 roots. This
formula gives 0, 1 or 2 roots in the following way.

– if b2 − 4ac > 0, then there are two different values in the
part of the formula ±

√
b2 − 4ac. This results in two

distinct roots.

– if b2 − 4ac = 0, then there is one value in the part of the
formula ±

√
b2 − 4ac (the value is 0). This results in a

single root.

– if b2 − 4ac < 0, then we are trying to take the square root
of a negative number. This is not possible, so there are no
roots.
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• The quadratic formula is easy to use: simply substitute the
values of a, b and c into the formula to get the roots. You
don’t need to commit it to memory: it will be given on your
exam.

• To apply the formula, you must first write your equation in
the form ax2 + bx+ c = 0.

• Then a is the coefficient of x2, b is the coefficient of x and c

is the constant term.

• Be careful with negative coefficients. For example, if
−2x2 − 3x− 4 = 0 then a = −2, b = −3 and c = −4.

Example 9.4.1 Solve x2 + 3x+ 2 = 0.

We have a = 1, b = 3 and c = 2. So

x =
−3±

√
32 − 4× 1× 2
2× 1

=
−3±

√
9− 8

2

=
−3±

√
1

2

=
−3 + 1

2
or
−3− 1

2

=
−2
2

or
−4
2

= −1 or − 2

Hence there are two roots,
x = −1 and x = −2. To check
these roots, substitute each into
the original equation to verify
that the answer is 0.
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? ?

Question 9.4.2 Solve and sketch each of the following:

(a) 2x2 − 7x− 4 = 0

(b) x2 − 4x+ 4 = 0
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? ?

Question 9.4.3 Solve each of the following quadratics:

(a) 2x2 + 3x+ 3 = 0

(b) x2 − 9 = 0

(c) x2 = 4x
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9.5 Solving quadratics by factoring

• We have seen how the quadratic formula solves quadratics.

• Sometimes it is possible to find the solution(s) using
factoring.

• First, you need to remember how to expand.

Example 9.5.1 Expand each of

(a) (x− 2)(x− 1)
Answer:
(x− 2)(x− 1) = x2 − 2× x− 1× x+ 2 = x2 − 3x+ 2

(b) (x− 2)2

Answer: (x− 2)2 = (x− 2)(x− 2) = x2 − 4x+ 4

• From Example 9.5.1, we can see that the equation
(x− 2)(x− 1) is exactly the same as the equation
x2 − 3x+ 2.

• Thus, if we are asked to solve x2 − 3x+ 2 = 0, it is the same
as solving (x− 2)(x− 1) = 0.

• Similarly, because (x− 2)2 is the same as x2 − 4x+ 4, then
solving x2 − 4x+ 4 = 0 is the same as solving (x− 2)2 = 0.

• We need to use the quadratic formula to solve the equations
written without the brackets.

• However, we can easily solve equations like (x− 2)(x− 1) = 0
and (x− 2)2 = 0 in our heads.

• To do so, we make use of the fact that if two things
multiply to give zero, then (at least) one of the
things must equal zero.
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Example 9.5.2 Solve (x− 2)(x− 1) = 0.

Because (x− 2)× (x− 1) = 0, we must have either (x− 2) = 0
or (x− 1) = 0.

If (x− 2) = 0 then x = 2. If (x− 1) = 0 then x = 1.

Hence the solutions are x = 2 and x = 1.

(Note that (x−2)(x−1) = x2−3x+ 2. Hence you have shown
that the solutions to x2− 3x+ 2 = 0 are x = 2 and x = 1. You
would get the same solutions using the Quadratic formula.)

Example 9.5.3 Solve (x− 2)2 = 0.

Because (x− 2)× (x− 2) = 0, we must have either (x− 2) = 0
or (x− 2) = 0 (which is the same thing).

If (x− 2) = 0 then x = 2.

Hence there is only one solution, x = 2.

(Note that (x − 2)2 = x2 − 4x + 4. Hence the answer you got
here should match those from Part (b) of Question 9.4.2.)

• This technique for solving quadratic equations is called
factoring.

• Recall that given a number n, factors of n are numbers which
multiply together to give n. For example, 15 = 5× 3.

• Here, we are using a similar technique, but rather than
finding factors of a number, we are instead finding factors of
the quadratic equation.

• That is, we are trying to rewrite the equation as a pair of
things which multiply together to give the equation. For
example, x2 − 3x+ 2 = (x− 2)× (x− 1).
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• Given a quadratic equation, if it is already written in
factored form, then don’t use the quadratic formula to solve
it: you can solve it just by looking at it.

• If the equation is not written in factored form, then you can
either use the quadratic formula, or you can try to factor it.

• Factoring requires some skill and patience. Study the
following example.

Example 9.5.4 Use factoring to solve x2 + 6x+ 8 = 0.

To factor this expression, we must rewrite it as

x2 + 6x+ 8 = (x+ a)(x+ b),

where we need to find the numbers a and b.

Now (x+ a)(x+ b) = x2 + bx+ ax+ ab = x2 + (a+ b)x+ ab.
Hence

x2 + 6x+ 8 = x2 + (a+ b)x+ ab,

so we must have (a+ b) = 6 and ab = 8.

Then we use trial and error to find values for a and b that
satisfy these equations.

First try a = 1 and b = 8. Then ab = 8, but a+ b = 9, not 6.
Next try a = 2 and b = 4. Then ab = 8, and a+ b = 6.

Hence x2 + 6x+ 8 = (x+ 2)(x+ 4),
and when we solve this we get
x = −2 or x = −4.
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• Factoring is often not easy: if you are not comfortable with
it, then note that the quadratic formula always works, and
you are always welcome to use it.

? ?

Question 9.5.5 Use factoring to solve y = x2 + x − 2, then
roughly sketch its graph.
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9.6 Applications of quadratics.

• Quadratic equations can be used to solve a variety of
problems.

• Be careful: when solving some problems, one of the roots
may be mathematically correct, but not possible for practical
reasons.

• For example, lengths or areas can’t be negative.

Example 9.6.1 Find all right-angle triangles which have
hypotenuse 2 units longer than one side and 1 unit longer than
the other side.

Let the length of the shortest side be x. Then the hypotenuse
is of length x+ 2, and the other side is of length x+ 1.

x

x+1
x+2

From Pythagoras’ theorem:
c2 = a2 + b2, so

(x+ 2)2 = x2 + (x+ 1)2, so

x2 + 4x+ 4 = x2 + x2 + 2x+ 1, so

0 = x2 − 2x− 3, so

0 = (x+ 1)(x− 3).

Hence x = −1 or 3. Clearly, x = −1 isn’t possible for the
length of a side, so the only solution is x = 3.
Hence the other sides are of lengths x + 1 = 4 and x + 2 = 5,
so the triangle has sides of lengths 3, 4 and 5.
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? ?

Question 9.6.2 Find the dimensions of all rectangles in which
the area equals the perimeter plus 3.5, and in which the longer
sides are twice the length of the shorter sides.
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10 Logarithms and exponentials

Why are we doing this?

• We’ve just seen polynomial functions, including quadratics
and linear equations, which all involved x raised to various
powers.

• Now, we encounter a different type of function: exponentials,
which involve the variable x in the power.

• Exponential functions are used for:

– modelling population increases and decreases

– economic growth and interest return on money

– radioactive decay

• We’ll see how to distinguish exponential growth functions
from exponential decay functions.

• We’ll introduce ex, a special exponential function.

• Finally, we’ll see how logarithms relate to exponentials.

• Topics in this section are:

– Introduction to exponentials.

– Exponential growth.

– Compound interest.

– Exponential decay.

– The exponential function, ex.

– Logarithms.
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10.1 Introduction to exponentials

• Recall, from much earlier on, the power (or index) laws:

Rule Example

aman = am+n 2322 = 25

(am)n = amn (23)2 = 26

am

an
= am−n

23

22
= 23−2 = 21 = 2

a−m =
1
am

2−3 =
1
23

=
1
8

a0 = 1 20 = 1

a1/m = m√a 21/3 = 3
√

2

• If y = xn, then x is called the base, and n is called the power
or exponent.

• Whenever we have worked with powers so far, the power
has been a constant, and the base has been the variable: for
example, x2, x7 and x−1.

• Now we introduce a new type of function, called an
exponential function.

• Such functions involve a variable in the exponent, such as

f(x) = 2x, g(x) = 10x, h(x) = ex.

• Polynomial functions have x in the base and constants in the
power (eg x2 + 2x+ 1), whereas exponentials have x in the
power and a constant base.
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• Exponential functions have many practical uses, such as

– radiocarbon dating of fossils

– decay of nuclear waste and contamination

– compound interest in bank accounts

– population growth and decay

10.2 Exponential growth

• Consider an exponential function y = ax, where a is a
constant.

• We can use almost any (positive) number a as our base. For
the moment, we restrict ourselves to a > 1.

? ?

Question 10.2.1 Let f(x) = 2x. Create a table of values for
f for x ∈ {0, 1, 2, 3, 4}.

x 0 1 2 3 4

f(x)

? ?

Question 10.2.2 At time of fertilisation t = 0 a zygote con-
tains 1 cell. This cell splits into two new cells after a certain
time, and cells continue to split into two. Let the number of
cells after t time periods be C(t). Find C(2), C(3) and C(4).

Note that these numbers match those in Question 10.2.1. Hence
for any integer time t ≥ 0, C(t) = 2t.
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In the previous examples x was always positive, but this does not
need to be the case.

? ?

Question 10.2.3 Let f(x) = 2x. Create a table of values for
f for x ∈ {−4,−3,−2,−1}.

x −4 −3 −2 −1

f(x)

? ?

Question 10.2.4 Let f(x) = 2x. Use Questions 10.2.1 and
10.2.3 to sketch a graph of f(x).

x

y

• In Example 10.2.5 we plot the exponential functions 2x, 3x

and 4x on each of four sets of axes, for different x values.

• Observe the similarities and differences between the graphs,
and compare them to the graph in Question 10.2.4.
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Example 10.2.5 Plots for x ∈ [0, 3] (at the top left), x ∈ [0, 5]
(top right), x ∈ [−3, 3] (bottom left) and x ∈ [−3, 2].
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• When x is a large, negative number y gets very close to 0 but
never equals 0.

• When x is large and positive, the graphs get very large and
positive.

• The graphs all grow very quickly.

• The graphs all pass through the point (0, 1).
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• The graphs in Example 10.2.5 all include an exponential
term, and y gets bigger as x gets bigger.

• Functions like this display exponential growth.

• Each of the graphs we have seen so far pass through the
point (0, 1) (because anything to the power 0 equals 1).

• Many quantities in business and nature grow exponentially.

• To accurately model such quantities, we need a more general
form of the equation for exponential growth.
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Exponential growth functions.

If a > 1 and C > 0 then any function of the form y = Cax will

display exponential growth.

• In the general form of the exponential growth function:

– C is a constant representing some initial conditions, such
as:
∗ the population at time t = 0; or
∗ the amount of radioactive material at time t = 0; or
∗ the temperature at time t = 0.

– Hence the graph passes through the point (0, C).

– The base a is a constant depending on the problem; a
determines how quickly the quantity grows.

– The graph will look like:

(0,C)

x

y
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Example 10.2.6 There are four cockroaches in a student’s
house at time x = 0. The population size P triples every week.
(1) Write an expression for the population size P (x) after x
weeks.

Answer: At time 0 there are 4 cockroaches, so we have C = 4.
The population size triples every week, so a = 3.

Hence the equation is P (x) = 4×3x. (Remember BEDMAS:
4× 3x 6= 12x)

(2) When is P first larger than 200?

Answer: We can use trial and error to find when the popula-
tion is first larger than 200. By substituting, P (1) = 4×3 = 12,
P (2) = 4× 32 = 36, P (3) = 4× 33 = 108 and P (4) = 4× 34 =
324.

Hence the population is first larger than 200 after 4 weeks.

10.3 Compound interest

• Another quantity that grows exponentially is money earning
compound interest in a bank account.

• The growth depends on two things: the initial amount
invested and the interest rate.

! !
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Compound interest.

If P dollars are invested at an interest rate of r per time period

(where r is a decimal) for a total of x time periods, then the

final value F (x) of the investment is given by

F (x) = P (1 + r)x.

• To use the compound interest formula you may need to
convert r from a percentage to a decimal number.
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• Be careful with time units: a key concept is how often the
interest compounds, which means how often the interest is
added to the account.

• Usually you will be given an interest rate per annum. If the
time periods for compounding are different, then you will
need to carefully and consistently calculate r and x.

Example 10.3.1 $100 is invested in a bank term deposit,
earning 6% interest per year, compounding annually.
(1) Write an expression for the balance M after x years.

Answer: Here we have r = 0.06 and P = 100.
Hence M(x) = 100(1 + 0.06)x

= 100(1.06)x.

(2) What is the balance after 3 years?
Answer:
When x = 3, M(3) = 100(1.06)3

= $119.10.

Example 10.3.2 $1000 is invested at 9% per annum com-
pounding monthly for 2 years. What is the final value F?

Answer: Here the interest compounds monthly, so we need to
convert both x and r to monthly values. There are 12 months
per year, so you need to multiply the number of years by 12,
and divide the annual interest rate by 12.

Hence x = 2× 12 = 24 (which is the
number of months in 2 years) and
r = 0.09/12 = 0.0075 (which is the
percent interest per month).

Hence F = 1000(1 + 0.0075)24

= $1196.41
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? ?

Question 10.3.3 $100 is invested in a bank term deposit, earn-
ing 6% interest per year, compounding monthly.

(a) Write an expression for the amount of money in the account
after x years.

(b) What is the balance after 3 years? (use (1.005)36 = 1.197)

(c) Compare your answer to Part (2) with that to Example
10.3.1 and explain any differences.

(d) If the time for compounding keeps getting shorter, what
will happen to the amount of interest earned?

MATH1040, Summer 2007/8. Section 10.3. Page 185



10.4 Exponential decay

• Until now we have only considered exponential functions of
the form y = Cax, where C > 0 and a > 1.

• All such functions represented exponential growth.

• Exponential functions can also have negative powers.

? ?

Question 10.4.1 Let f(x) = 2−x (This also equals (1/2)x.)

(a) Create a table of values for f for x ∈ {0, 1, 2, 3, 4}.

x 0 1 2 3 4

f(x)

(b) Create a table of values for f for x ∈ {−4,−3,−2,−1}.

x −4 −3 −2 −1

f(x)

(c) Sketch a graph of f(x).

x

y
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• The graph in Question 10.4.1 includes an exponential term,
but y gets smaller as x gets bigger.

• Functions like this display exponential decay.

• Many quantities in business and nature decay exponentially.
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Exponential decay functions.

If a > 1 and C > 0 then any function of the form y = Ca−x

will display exponential decay.

Example 10.4.2 Plots of 2−x, 3−x and 4−x for x ∈ [−3, 0]
(left) and x ∈ [−3, 3] (right).
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• When x is large and positive, y gets very close to 0 but never
equals 0.

• When x is a large, negative number the graphs get very large
and positive.

• The graphs decrease (decay) very quickly.

• The graphs all pass through the point (0, 1).
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10.5 The exponential function, ex

• Any exponential growth function can be written as y = Cax

(where a > 1), and any exponential decay function can be
written as y = Ca−x, again with a > 1.

• Is any choice of value for a ‘better’ than other choices?

Example 10.5.1 You borrow $1000 from a loan shark, who
charges 100% interest for a month. What is the amount A you
owe at the end of the month if interest is compounded:

• each month?

Answer: In each case, A = P (1 + r)n, where P = 1000, n
is the number of time periods and r is the interest rate per
time period, expressed as a decimal number.
Here, n = 1 and r = 1, so A = 1000(2)1 = $2000.

• each day? (Assume 30 days in the month.)

Answer: Here, n = 30 and r=1/30, so A = 1000(1 +
1/30)30 = $2674.32.

• each hour?

Answer: Here, n = 30 × 24 = 720 and r=1/720, so A =
1000(1 + 1/720)720 = $2716.40.

• each minute? Answer: A = $2718.25

• each second? Answer: A = $2718.28

It seems likely that as the time for compoundings gets shorter
and shorter, the final amount will not keep getting indefinitely
larger: it looks like we are approaching some fixed answer!
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• In Example 10.5.1 we borrowed $1,000, which turned into
approximately $2,718.28 when interest compounded very
frequently at 100% for one time period.

• Dividing the final figure by 1000 (the amount initially
borrowed), we see that each dollar we borrowed turned into
$2.71828. . . .

• This number is so important that it has a special name.

! !
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The mathematical constant, e.

The mathematical constant e is an irrational number that arises

in a large number of places. Because e is irrational, like π and√
2, its value cannot be written exactly as a fraction or decimal.

Its approximate value is:

e ≈ 2.71828 . . .

(This number is called e in honour of the famous 18th century

Swiss mathematician Euler, one of the greatest mathematicians

of all time.)

• e is the most frequently used base for exponential functions.

• There will probably be a key on your calculator labelled ex

(or possibly exp(x)).

• It may seem strange (and it certainly is complicated) to use
an irrational number as the base: it is easy to calculate
22, 23, 24 and so on, but much harder to calculate e2, e3, e4.

• However, e occurs in many vital places, with interesting and
useful properties, so is worth the extra effort.

• e is so important that we call ex the exponential function.
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• We can draw a plot of f(x) = ex. Of course:

– as e > 1, this graph will display exponential growth.

– as e > 2 and e < 3, the graph will lie between 2x and 3x.

– the graph will pass through (0, 1).
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Similarly, we know that e−x must represent exponential decay:

0

5

10

15

20

–3 –2 –1 1 2 3

x

e−x y
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• Because ex is so important, from now on we will almost
exclusively use e as the base.

• That is, given an exponential function with any base a, we
can rewrite this as an equivalent function with a base of e
and with the power changed in an appropriate way.

• Putting all of the above together, we have the following
general form for exponential growth functions and
exponential decay functions.

! !
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General form of exponential functions.

The general form of an exponential function is y = Cekx, where

C and k are constants, k 6= 0 (and usually C > 0).

If k is positive the function gives exponential growth, and if k

is negative the function gives exponential decay.

• Many things can all be specified by exponential functions
involving e, including population growth and decline, growth
in computer speed, the size of an economy and continuously
compounding interest (in which the interest is continually
added to an account all of the time).

Example 10.5.2 If $P is invested at an annual interest rate
of r, compounding continuously, then the amount of money
at any time x is given by

F (x) = Perx.
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Example 10.5.3 A certain radioactive substance decays ex-
ponentially. At time x the amount of material remaining is

M(x) = Qe−kx,

where Q is the initial quantity and k is a constant depending
on the substance.

Example 10.5.4 The world’s population is growing at about
2% per annum; assume this rate continues indefinitely. If the
current population at time x = 0 is 6 billion, then the popula-
tion at any time x will be approximately

P (x) = 6000000000e0.02x.

The left graph shows the world’s population from 1650 until
2000. The right graph shows the above equation plotted from
time 0 (the year 2000) until time 50 (the year 2050). In each
case, the y axis represents population in billions. Note the
similarities in the shapes of the graphs.
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10.6 Logarithms

• Given values for a and x, it is (often) not too hard to
evaluate y = ax. For example, if a = 2 and x = 5 then
ax = 25 = 32.

• Often, the reverse step is useful: given y and a, can we find x
such that y = ax? For example, if 81 = 3x then how do we
find x?

• Previously we have solved for x in linear and quadratic
equations, but solving equations with x in the power
requires a different technique.

• The reverse step (or inverse function) of an exponential
function is called a logarithm.

• Sometimes the answer is fairly easy to find; in this course
we’ll only deal with this sort of question.

Example 10.6.1 Find x such that 1000 = 10x.

Answer: This question is asking: to what power should we raise
10 in order to get 1000?

Now 1000 = 103 so x = 3.

? ?

Question 10.6.2 In each case, find x such that y = ax:

(a) y = 81 and a = 3

(b) y = 4 and a = 16
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Logarithms.

Let a > 0, a 6= 1 and y = ax. Then we say that x = logay

(pronounced “x is the logarithm to base a of y”).

? ?

Question 10.6.3 Rewrite your answers to Question 10.6.2 in
logarithm form.

(a) Now 100 = 102, so log10 100 = 2.

(b)

(c)

• We can take logarithms to any base a > 0, a 6= 1.

• The most common bases are 10 and e, giving log10 and loge.

• Your calculators probably have keys for both of these.

• Don’t be scared of logarithms: given a number y (eg
y = 10000), x = log10 y simply means: x is the power to
which we must raise the base (10) in order to get y. Because
104 = 10000, we have x = 4.
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Natural logarithms.

Logarithms to base e are called natural logarithms, and the

natural logarithm of x is written as lnx.

• Thus, given y, x = ln y simply means that x is the power to
which we must raise e in order to get y.
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? ?

Question 10.6.4 The intensity of earthquakes is measured us-
ing the Richter scale, which is a log10 scale. If an earthquake
has intensity I, then its magnitude on the Richter scale is given

by R = log10

(
I

I0

)
, where I0 is a minimum intensity used for

comparison (representing a very mild tremor).

(a) Rewrite this formula, making I the subject.

(b) The 2004 tsunami came from a quake measuring 8.9. How
many times larger than I0 is this? (Use 100.9 = 7.943.)

(c) In 1996, there was a magnitude 2.9 quake in Brisbane. How
many times larger than this was the 2004 quake?

(d) An increase of 1 in the Richter magnitude results in 30
times more energy released. If magnitude 1 equals 10kg of
TNT exploding, what does a magnitude 8.9 represent?
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11 Miscellaneous non-linear functions

Why are we doing this?

• This is a very short section which discusses a few extra
non-linear functions.

• We’ll mostly see how to draw their graphs, and we’ll briefly
mention domain and range again.

• You will probably encounter these functions in your future
work.

• We’ll spend most time on circles, seeing how to find their
equations.

• Circles will be useful when we study trigonometry.

• Topics in this section are:

– Non-linear functions.

– Circles.
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11.1 Non-linear functions

• We have seen graphs of linear equations, quadratic equations
and exponential equations, but it is possible to draw the
graphs of many other functions.

• You can still sketch many graphs by calculating a table of
values, plotting the points and joining the dots.

• Note that you may need to use many data points in order to
plot the graphs (not just two or three points).

• Also, always think about the equation you are plotting.
Some points may not be in the domain.

Example 11.1.1 Sketch the graph of y = x3.

First we create a table of values.

x −3 −2 −1 0 1 2 3
y −27 −8 −1 0 1 8 27

Finally, plot the graph:
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Example 11.1.2 Sketch the graph of y =
√
x.

First, note that we cannot find the square root of a negative
number. Hence the domain of

√
x is [0,∞), so the graph should

only exist for x ≥ 0.

Also, when evaluating the function y =
√
x, it is always as-

sumed that we are taking the positive square root. Hence the
range of

√
x is [0,∞), so the graph should only exist for y ≥ 0.

Create a table of values:

x 0 1 2 4 9 16 25
y 0 1 1.41421 . . . 2 3 4 5

Finally, plot the graph:
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Example 11.1.3 Sketch the graph of y =
1
x

.

First, note that we cannot divide by 0. Hence the domain of
1/x is (−∞, 0)∪ (0,∞), so the graph should not exist at x = 0.

Also, we clearly cannot have y = 0, because 1/x = 0 has no
solution. Hence the graph cannot exist at y = 0, so the range
must be (−∞, 0) ∪ (0,∞).

Create a table of values and draw the graph:

x −3 −2 −1 −1
2 −1

3
1
3

1
2 1 2 3

y −1
3 −1

2 −1 −2 −3 3 2 1 1
2

1
3

There are lots of things to notice about this graph:

• The graph never touches or crosses the x-axis.

• The graph never touches or crosses the y-axis.

• As x gets big (and +ve or −ve), y gets close to 0.

• As x gets close to 0, y gets big (and positive if x is positive,
or negative if x is negative).
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Example 11.1.4 Sketch the graph of y = |x|.

Recall that |x| means the absolute value of x, so the domain is
(−∞,∞) and the range is [0,∞).

Create a table of values:
x −2 −1 0 1 2
y 2 1 0 1 2

−4
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−2

−1

1

1 2 3−1−2 4−3−4

4

3

2

x

y

Example 11.1.5 Sketch the graph of y = −|x|.

This graph is easy to obtain from the graph in Example 11.1.4.
In that example y was always positive. Here we have negated
y, so it is always negative. Thus the domain is (−∞,∞) and
the range is (−∞, 0]. The graph must be as follows:
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11.2 Circles

• Just as we can give the mathematical equation of a straight
line or a parabola, we can also give the mathematical
equation of a circle.

• Consider a circle with centre (0, 0) and radius r.

• Let (x, y) be any point on the circle, so (x, y) is a distance of
r from the circle centre.

• We can draw a right-angled triangle as shown in the
following diagram.

(x,y)

r

x

y

(0,0)

• Then Pythagoras’ theorem gives us: r2 = x2 + y2.

• This equation holds for every point on the circle.

• Hence we obtain the following.

! !
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Equation of a circle with centre (0, 0).

A circle with centre at the origin and radius r has equation

x2 + y2 = r2.
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Example 11.2.1 The circle with radius 5 centred at the origin
has equation x2 + y2 = 25.

The point (3, 4) lies on the circle; you can check this because
x2 + y2 = 32 + 42 = 25 which is equal to r2.

Similarly, (4, 3), (−3,−4), (0, 5), (0,−5), (5, 0) (−5, 0), and
(
√

20,
√

5) all lie on this circle.

(1, 4) does not lie on the circle, as x2 + y2 = 12 + 42 = 17.

(5,0)

(0,−5)

(0,0)

(−5,0)

(0,5)

(−3,−4)

(1,4)

(3,4)

(4,3)

y

x

(
√

20,
√

5)

? ?

Question 11.2.2 The unit circle is a circle of radius 1, centred
at the origin. What is the equation of this circle, and where
does it intersect the x and y axes?
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12 Trigonometry

Why are we doing this?

• Angles, degrees, radians, and the trig functions sin θ, cos θ
and tan θ form the basis of geometry, architecture, civil
engineering, physics and surveying.

• Trig functions are fundamental to military applications,
navigation and other methods of transport, including planes,
boats and spacecraft.

• We’ll see two ways of measuring angles: degrees and radians.

• We’ll encounter trig functions and angles less than 90◦, then
extend the concepts to angles greater than 90◦.

• We’ll solve some practical problems, to see some uses for trig
functions.

• We’ll also examine the graphs of the trig functions and
explain their appearance.

• Topics in this section are:

– Introduction to trigonometry.

– Radians.

– Angles bigger than π/2 (90◦).

– Graphs of the functions sinx and cosx.
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12.1 Introduction to trigonometry

• When studying angles, it’s useful to define three
trigonometric ratios.

• You should be familiar with these!
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Trigonometric ratios.

In a right-angled triangle with hypotenuse of length c, other

sides of lengths a and b, and a given angle θ, we can define the

three trigonometric ratios sin θ, cos θ and tan θ by:

θ

c b

a

sin θ =
opposite

hypotenuse
=
b

c

cos θ =
adjacent

hypotenuse
=
a

c

tan θ =
opposite

adjacent
=

sin θ
cos θ

=
b

a

? ?

Question 12.1.1 A 5 metre piece of wood is leant against a
wall so that the angle between the ground and the wood is 30◦.
How far up the wall does the wood reach? (Hint: sin 30◦ =
0.5.)
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12.2 Radians

• A degree is a unit for measuring angles.

• A different unit for measuring angles is radians.

• In a circle of radius r, one radian is the angle which leads to
an arc of length r on the circumference of the circle.

r

r

1 radian

• We can easily convert from degrees to radians, and from
radians to degrees.

• A circle of radius r has circumference 2πr, so there are 2π
radians in any circle. There are 360◦ in any circle. Hence:

! !
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Degrees → radians and radians → degrees.

• To convert an angle from degrees to radians, multiply the

angle by 2π/360 (= π/180).

• To convert an angle from radians to degrees, multiply the

angle by 360/(2π) (= 180/π).

Example 12.2.1 Converting angles from degrees to radians:

360◦ × π

180
= 2π radians 180◦ × π

180
= π radians

90◦ × π

180
= π/2 radians 45◦ × π

180
= π/4 radians
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Example 12.2.2 Converting angles from radians to degrees:

π

3
radians ×180

π
= 60◦

π

6
radians ×180

π
= 30◦

5π
3

radians ×180
π

= 300◦ 1 radian ×180
π
≈ 57.3◦

12.3 Angles bigger than π/2 (90◦)

• Thus far, we have mostly looked at angles between 0 and 90◦

(equivalently, between 0 and π/2 radians).

• The trig ratios sin θ, cos θ and tan θ have only been defined
for angles in this range (as it is not possible to have an angle
larger than 90◦ in a right-angled triangle).

• Of course, it is possible to have angles larger than π/2
(remember, these are called obtuse angles).

• By convention, angles are measured in the x, y plane,
anticlockwise around from the positive x-axis. Negative
angles are measured clockwise from the positive x-axis.

? ?

Question 12.3.1 Mark each of the following angles on a set of
axes: 135◦, 180◦, 240◦, 360◦, 450◦,−30◦.
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We need to extend the definitions of the trig functions so they
also apply to angles more than 90◦. Our definitions are based on
the unit circle (with radius 1 centred on the origin; see Page 202)
and are completely consistent with right-angled triangles.

• Draw a right-angled triangle from the origin, to the point
(x, 0), to the point P = (x, y) and back to the origin. Call
the angle at the origin θ. (See below, left.)

1

1
P=(x,y)

x

yθ

Q=(x,y)

θ

• The lengths of the three sides of the triangle are x (the
horizontal side); y (the vertical side); and 1 (the hypotenuse;
it is the radius of the circle).

• Using the right-angled triangle, sin θ =
y

1
= y, cos θ =

x

1
= x

and tan θ =
y

x
.

• Thus we can work out the trig values for the angle θ simply
by reading the coordinates of the point P = (x, y). We don’t
need to use the triangle or take ratios at all.

• Now we extend this approach to any point on the circle, not
just in the first quadrant; see the right-hand diagram.

• Given any point Q = (x, y) on the circle, we can draw the
angle θ as above, obtaining any angle between 0◦ and 360◦,
and we have sin θ = y and cos θ = x.

• This gives trig values for any angle: simply read the (x, y)
coordinates of the corresponding point on the unit circle.
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• Clearly:

– cos θ will be positive whenever the x-coordinate is
positive, and negative whenever x is negative.

– sin θ will be positive whenever y is positive, and negative
whenever y is negative.

• There is a quick way to remember which trig values are
positive in which quadrants. It’s called the “CAST” method,
and is illustrated in the following diagram:

AS

T C

12

3 4

Quadrants

– ‘C’ in Quadrant 4 means that for angles θ here, only cos θ
is positive.

– ‘A’ in Quadrant 1 means that for angles θ here, All trig
functions (sin θ, cos θ and tan θ) are positive.

– ‘S’ in Quadrant 2 means that for angles θ here, only sin θ
is positive.

– ‘T’ in Quadrant 3 means that for angles θ here, only tan θ
is positive.

• If you think about angles in different quadrants you’ll see
that there are many relationships between trig ratios in
different quadrants.

• For example, sinx = sin(180◦ − x).

• Of course, sinx = sin(x+ 360◦) and cosx = cos(x+ 360◦).
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12.4 Graphs of sin x and cosx

• We’ve defined sin θ, cos θ and tan θ for any angles.

• Thus sinx, cosx and tanx can be thought of as functions of
the given angle x, and we can draw their graphs by
calculating a lot of points.

• Graphs are usually plotted with x in radians.

• Because cosx and sinx are defined by the x- and
y-coordinates (respectively) of points on the unit circle:
– The range of both cosx and sinx is [−1, 1]

– The graphs must ‘repeat’ every 2π radians (360◦).

– An angle of 0 radians (0◦) corresponds to the point (1, 0) on the unit

circle, so cos 0 = 1 and sin 0 = 0.

– An angle of π/2 radians (90◦) corresponds to the point (0, 1) on the

unit circle, so cosπ/2 = 0 and sinπ/2 = 1.

– An angle of π radians (180◦) corresponds to the point (−1, 0) on the

unit circle, so cosπ = −1 and sinπ = 0.

– An angle of 3π/2 (270◦) corresponds to the point (0,−1) on the unit

circle, so cos 3π/2 = 0 and sin 3π/2 = −1.

? ?

Question 12.4.1 Use the above data to plot some points on
the following axes, with sinx on the left, and cosx on the right.
Use x ∈ [−2π, 4π].

x

y

x

y

−2π −π π 2π 3π 4π −2π −π π 2π 3π 4π

1 1

-1 -1
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Here are accurate plots of sinx and cosx for x ∈ [0, 2π].

Graph of sinx on x ∈ [0, 2π]:

π

x

0.5

1

2π

-1

0
3π/2

y

-0.5

0 π/2

Graph of cosx on x ∈ [0, 2π]:

π

x

0.5

1

2π

-1

0
3π/2

y

-0.5

0 π/2
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• For comparison we can plot sinx and cosx on one graph:

Graph of sinx and cosx on x ∈ [0, 2π]:

-1

x

2π

0.5

3π/2π
0

1

y

π/20

-0.5

sinx

cosx

• We have said that the trig graphs must repeat every 2π
radians (360◦). Hence we have the following graph of sinx as
x goes from −2π to 2π (−360◦ to 360◦).

Graph of sinx on x ∈ [−2π, 2π]:

0.5

0

-0.5

−2π

x

2ππ0

y

1

−π

-1
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• Let a and b be numbers, and consider functions like
f1(x) = a sinx, f2(x) = sin bx and f3(x) = a sin bx. (The
same variations are possible for cosx.)

• Each of these is a smooth repeating wave, like the original
functions. However, they differ from the originals in:

– their amplitude, which is the vertical distance from the
centre to the lowest (or highest) point in each ‘wave’;
and/or

– their frequency, which is the number of complete waves
in a given length.
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Changing amplitude/frequency of trig functions.

The graph of ‘a sin bx’ has an amplitude that is a times that of

sinx and a frequency that is b times that of sinx.

Example 12.4.2 The graph of sinx has amplitude 1 (its range
is [−1, 1]) and repeats every 2π radians.

The graph of 3 sinx has amplitude 3 (its range is [−3, 3]) and
repeats every 2π radians.

The graph of sin 2x has amplitude 1 (its range is [−1, 1]) and
repeats every π radians (so has twice the frequency of sinx).

The graph of 5 sin 2x has amplitude 5 (its range is [−5, 5]) and
repeats every π radians (so has twice the frequency of sinx).
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Graph of sinx and 2 sinx on x ∈ [−2π, 2π]:

−2π 0

x

y 1

-2

0

-1

2

2π

2 sinx

sinx

Graph of sinx and sin 2x on x ∈ [−2π, 2π]:

−2π

x

y

2π

-0.5

1

-1

0.5

0
0

sinx sin 2x
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13 Derivatives and rates of change

Why are we doing this?

• Now we start work on calculus.

• We will see how to find the rate of change (or slope) of an
arbitrary graph.

• This is one of the most useful applications of mathematics.
For example, marginal cost and marginal revenue curves
from economics rely on it.

• We’ll solve a number of simple differentiation problems, then
encounter some rules which allow more complex functions to
be differentiated.

• Pay careful attention to all of this material. Most of what we
do from now on hinges critically on this. If you get lost,
you’ll be in trouble for the rest of semester!

• It looks different to what we have seen before, and might be
a bit confusing at first, but it’s really not at all hard.

• Topics in this section are:

– Differentiation and derivatives.

– Interpreting derivatives.

– Simple differentiation.

– Derivatives of some common functions.

– Product rule.

– Quotient rule.

– Chain rule.

– Second derivatives.
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13.1 Differentiation and derivatives

• In a straight line y = mx+ c, m is the gradient or slope of
the line, which is constant over the whole line.

• It is incredibly useful to look at the slopes of graphs which
are not straight lines.

• Obviously, in such graphs the slope is not the same over the
entire graph: it will vary from point to point.

• There are special names and notations when finding slopes.

! !

'

&

$

%

Differentiation.

• The derivative of a function f(x) gives the slope of f(x)
at any point, and the process of finding the derivative is

called differentiation.

• The derivative of f(x) can be written in two ways:

(a) f ′(x), pronounced “f dashed x”; or

(b)
df

dx
, pronounced “df dx”.

• The value of the derivative at the point x = a gives the

slope of f(x) at the point x = a.

• Sometimes, derivatives do not exist at certain points. For
example, the graph of y = 1/x does not exist at x = 0, so it
doesn’t make sense to talk about its slope at that point.
Here, we’ll assume that derivatives exist whenever needed.

• The notation
df

dx
is not a fraction; it is a concept. The d’s do

not cancel, and it is not df divided by dx. The f means that
f is the function being differentiated, and the x means that
differentiation is with respect to x.
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13.2 Interpreting derivatives

• Before we see how to find derivatives, it’s important that you
understand what they mean.
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The meaning of derivatives.

The derivative of a function is itself a function, whose value
at any point x gives the slope of the original function at that

point x.

• Be quite clear on the distinction between:

– the value of the function at a point; and

– the slope of the function at a point.

• The value of the function at a point is the y-coordinate of
the point, which can be found by substituting the
x-coordinate into the expression for the function.

• The slope of the function at a point is a measure of how
quickly the function is changing at that point. This can be
found by substituting the x-coordinate into the expression
for the derivative.

• The slope of the function at a point is equal to the value of
the derivative at the x-coordinate of that point.

• Because the original function and its derivative are both
functions, they can both be plotted on a set of axes.

• You should be able to look at the function and its derivative,
and explain relationships between them.

• For example, if the derivative is negative at a certain point
then the function must have negative slope at that point, so
the function should be getting smaller.
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Question 13.2.1 The following figure shows the function
f(x) = x2 + 4, and its derivative f ′(x) = 2x. Identify which
graph is the function and which is the derivative. Then observe
the relationships between f and f ′ when:

(1) f ′ is 0.

(2) f ′ is positive.

(3) f ′ is negative.

(4) f ′ changes from negative to positive.

–6

–4

–2

0

2

4

6

8

10

12

–3 –2 –1 1 2 3

x

y
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Question 13.2.2 The following figure shows the function
f(x) = x3− 12x+ 5, and its derivative f ′(x) = 3x2− 12. Iden-
tify which is which. Then observe the relationships between f

and f ′ when:

(1) f ′ is 0.

(2) f ′ is positive.

(3) f ′ is negative.

(4) f ′ changes from positive to negative.

(5) f ′ changes from negative to positive.

–10

0

10

20

30

–4 –3 –2 –1 1 2 3 4

x

y
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Question 13.2.3 The following figure shows the function
f(x) = sinx, and its derivative f ′(x) = cosx, on x ∈ [0, 2π].
Identify which is which. Then explain the relationships between
f and f ′ when:
(1) f ′ is 0.

(2) f ′ is positive.

(3) f ′ is negative.

(4) f ′ changes from positive to negative.

(5) f ′ changes from negative to positive.

-1

x

2π

0.5

3π/2π
0

1

y

π/20

-0.5
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13.3 Simple differentiation

• There are a number of useful rules which allow derivatives to
be calculated surprisingly easily.

• We’ll cover differentiation rules in this section and in the
next two sections.

• The first collection of rules is summarised in the following
table.
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Simple differentiation.

Let f(x) and g(x) be functions. Then:

• If n is any non-zero number and f(x) = xn then

f ′(x) = nxn−1.

• If c is any constant and f(x) = c then f ′(x) = 0.

• If c is any constant then (cf)′ = cf ′.

• (f + g)′ = f ′ + g′.

• (f − g)′ = f ′ − g′.

• These rules are described in detail on the next few pages,
with some examples.
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Let n be any non-zero number. If y = xn then
y′ = nxn−1.

Example 13.3.1 Examples of using this rule include:

• If y = x2 then n = 2, so y′ = 2× x2−1 = 2x1 = 2x.

• If y = x3 then n = 3, so y′ = 3× x3−1 = 3x2.

• If y = x then n = 1, so y′ = 1× x1−1 = 1x0 = 1.

• If y = x4 then y′ = 4x3.

• If y = x9 then y′ = 9x8.

• If y =
1
x

then y = x−1 so n = −1.

Hence y′ = −1× x−1−1 = −x−2 = − 1
x2

.

• If y = x−2 then y′ = −2x−3 =
−2
x3

.

• If y =
√
x then y = x1/2 so n = 1/2.

Hence y′ =
1
2
x1/2−1 =

1
2
x−1/2 =

1
2
√
x

.

? ?

Question 13.3.2 Find y′ for each of:

(a) y = x10

(b) y = x−7

(c) y = x3/2
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The next rule involves a constant multiplied by a function:
the derivative equals the constant times the derivative of the
function.
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�Let c be any constant. Then (cy)′ = cy′.

Example 13.3.3 Examples of using this rule include:

• If y = 4x2 then y′ = 4× 2× x2−1 = 8x1 = 8x.

• If y = 5x3 then y′ = 5× 3× x3−1 = 15x2.

• If y = 7x then y′ = 7× 1× x1−1 = 7x0 = 7.

• If y = −6x4 then y′ = −24x3.

• If y =
x9

9
then y′ = x8.

• If y =
4
x

then y′ = 4×−1× x−1−1 = −4x−2 = − 4
x2

.

? ?

Question 13.3.4 Find y′ for each of:

(a) y = 9x3

(b) y = 8x1/2

(c) y = 6x−5
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The next rule involves the sum or difference of two functions:
to find the derivative of the sum (or difference) of two functions,
add (or subtract) the derivatives of each function.
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If f(x) and g(x) are functions, then (f + g)′ = f ′ + g′

and (f − g)′ = f ′ − g′.

Example 13.3.5 Examples of using this rule include:

• If y = x2 + 3x then y′ = 2x+ 3.

• If y = 3x3 + 2x2 + 4x+ 1 then y′ = 9x2 + 4x+ 4.

• If y = 6x+ 6x−2 then y′ = 6− 12x−3 = 6− 12
x3

.

• If y = x2 − 3x then y′ = 2x− 3.

• If y = x3 − 3x2 then y′ = 3x2 − 6x.

? ?

Question 13.3.6 Find y′ for each of:

(a) y = −2x3 + 4x2 + 3x− 5

(b) y = x2 − x+
√
x

(c) y = 3 + 1/x
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13.4 Derivatives of some common functions

• In this section we’ll see how to differentiate the functions
sinx, cosx, ex and lnx.
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Derivatives of trig functions.

If y = sinx then y′ = cosx.

If y = cosx then y′ = − sinx.

Example 13.4.1 Examples of using this rule include:

• If y = 3 sinx then y′ = 3 cosx.

• If y = − sinx then y′ = − cosx.

• If y = − cosx then y′ = sinx.

? ?

Question 13.4.2 Find y′ for each of:

(a) y = x2 + sinx

(b) y = −x3 + 4x+ 4 sinx

(c) y = x2 − cosx

(d) y = sinx+ 2 cosx
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• One of the most important properties of the exponential
function ex relates to its derivative.

• At any point on the graph of y = ex, the slope of the graph
equals the value of the graph.

• ex is the unique (non-zero) function for which this is true
(that is, no other non-zero function satisfies this property).
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Derivative of ex.

If y = ex then y′ = ex.

• Think about what this means! When the function value is 1,
its slope must also be 1. When function value is 2, the slope
must be 2. When the function value is 37.8, the slope must
also be 37.8, and so on.

• Thus, differentiating ex is easy: it remains unchanged.

• Don’t get mixed up with the rule that says if y = xn then
y′ = nxn−1. That rule only works when we have x raised to
a power which is a constant number.

• Here, we have e raised to a power which is a variable x.

• Thus the rule for differentiating ex is completely different to
the rule for differentiating xn.

• In particular, when we differentiate ex, the power remains
unchanged.

Example 13.4.3 Examples of using this rule include:

• If y = x3 + ex then y′ = 3x2 + ex.

• If y = sinx− ex then y′ = cosx− ex.
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Question 13.4.4 Find y′ for each of:

(a) y = ex + 7

(b) y = 3x2 + 2x+ 4 + ex

• Finally, we see how to differentiate lnx.
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Differentiating lnx.

If y = lnx then y′ =
1
x
.

Example 13.4.5 Examples of using this rule include:

• If y = lnx+ 7x+ 6 then y′ =
1
x

+ 7.

• If y = 3x− 6 lnx then y′ = 3− 6
x

.

? ?

Question 13.4.6 Find y′ for each of:

(a) y = lnx+
1
x

(b) y = ex − 3 lnx
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Summary of rules for differentiation.

Let f(x) and g(x) be functions. Then:

• If n is any non-zero number and f(x) = xn then

f ′(x) = nxn−1.

• If c is any constant and f(x) = c then f ′(x) = 0.

• If c is any constant then (cf)′ = cf ′.

• (f + g)′ = f ′ + g′.

• (f − g)′ = f ′ − g′.

• If f(x) = sinx then f ′(x) = cosx.

• If f(x) = cosx then f ′(x) = − sinx.

• If f(x) = ex then f ′(x) = ex.

• If f(x) = lnx then f ′(x) =
1
x

.

13.5 Product rule

• There are several additional important rules for finding
derivatives.

• The first rule relates to finding the derivative of the product
of two functions.

• In general, the answer does not simply equal the product of
the derivatives!

• We need a special rule, called the product rule, which enables
us to differentiate in this case.
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Product rule.

Let u(x) and v(x) be functions. If y(x) = u(x)× v(x) then we

differentiate y as follows:

y′ = (uv)′ = u′v + uv′

Another way of writing this is:

y′ =
dy

dx
=
du

dx
.v + u.

dv

dx

In English, the product rule says:
The derivative of the product of two functions equals

(the derivative of the first function) × (the second function) +

(the first function) × (the derivative of the second function)

Example 13.5.1 Here are some functions which must be dif-
ferentiated using the product rule:

• y = (3x+ 4) sinx

(y = u× v where u = 3x+ 4 and v = sinx)

• y = (3x2 + 2x+ 4)(2x4 − 9)

(y = u× v where u = 3x2 + 2x+ 4 and v = 2x4 − 9)

Example 13.5.2 If y = xex, find y′.

Answer: Let u = x and v = ex, so y = uv.

u′ = 1 and v′ = ex.
We then substitute into the product rule formula, so

y′ = u′v + uv′ = 1× ex + x× ex

= ex + xex

= ex(1 + x)
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Question 13.5.3 Let f(x) = x3 × x4.

(a) Find f ′(x) by first simplifying f , then differentiating.

(b) Find f ′(x) using the product rule. Verify that your answer
matches that in Part (a).

(c) Finally, verify that it is not correct to just let the deriva-
tive of the product be the product of the derivatives.
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Example 13.5.4 Let f(x) = x2 sinx. Find f ′(x).
Let u = x2 and v = sinx, so f(x) = uv.
So u′ = 2x and v′ = cosx. Then

f ′(x) = u′v + uv′

= 2x sinx+ x2 cosx

? ?

Question 13.5.5 Let y = x lnx. Find y′.
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13.6 Quotient rule

• The next differentiation rule is called the quotient rule: it
allows us to differentiate functions which are the quotient of
two other functions.
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Quotient rule.

Let u(x) and v(x) be functions. If y(x) =
u(x)
v(x)

then we differ-

entiate y as follows:

y′ =
(u
v

)′
=
u′v − uv′

v2

Another way of writing this is:

y′ =
dy

dx
=

du

dx
.v − u.dv

dx
v2

Example 13.6.1 Here are some functions which must be dif-
ferentiated using the quotient rule:

• y =
3x+ 1
x2

(y =
u

v
where u = 3x+ 1 and v = x2)

• y =
sinx
cosx

(y =
u

v
where u = sinx and v = cosx)

• y =
ex

lnx
(y =

u

v
where u = ex and v = lnx)

MATH1040, Summer 2007/8. Section 13.6. Page 231



Example 13.6.2 If y =
x+ 1
x− 1

, find y′.

Answer: Let u(x) = x+ 1 and v(x) = x− 1, so y =
u

v
.

Clearly, u′ = 1 and v′ = 1. Then we substitute these (and u

and v) into the quotient rule formula.

Then y′ =
u′v − uv′

v2
=

1× (x− 1)− (x+ 1)× 1
(x− 1)2

=

x− 1− x− 1
(x− 1)2

=
−2

(x− 1)2

? ?

Question 13.6.3 Let f(x) =
(x+ 1)
x

(a) Find f ′(x) by first simplifying f then differentiating.

(b) Find f ′(x) using the quotient rule. Verify that your answer
matches that in Part (a).
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13.7 Chain rule

• We have seen how to differentiate functions like sinx, cosx,
ex and lnx.

• What if the input to the function is more complicated than
just x?

• For example, how do we differentiate functions like e2x or
sin(3x+ 4)?

• We need to introduce a new rule, called the chain rule.

• It’s based on composition of functions, which we studied in
Section 8. Some books call it the composite function rule.

• Most people find the chain rule to be the hardest of the
differentiation rules.
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Chain rule.

Let u(x) be a function. If y is a function of u(x), then

y′ =
dy

dx
=
dy

du
× du

dx

• The chain rule applies when we are differentiating a function
y which is itself a function of another function u(x).

• The chain rule says that to differentiate y with respect to x,
we need to:

– differentiate y with respect to u;

– differentiate u with respect to x; and

– multiply the two together.

• We need to be able to identify when to apply the chain rule,
and what u(x) is.
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Example 13.7.1 Let something represent some function of
x. The only functions we will encounter that require the chain
rule to differentiate are:

• y = (something)power For example:

1. y = (2x+ 4)2, so y = u2 where u = (2x+ 4).

2. y = (1− x)15, so y = u15 where u = (1− x).

3. y = (sinx)7, so y = u7 where u = sinx.

• y = sin(something) For example:

1. y = sin(x+ 1), so y = sinu where u = (x+ 1).

2. y = sin(x2), so y = sinu where u = (x2).

• y = cos(something) For example:

1. y = cos(3x− 4), so y = cosu where u = (3x− 4).

2. y = cos(x− 1), so y = cosu where u = (x− 1).

• y = e(something) For example:

1. y = e2x+4, so y = eu where u = (2x+ 4).

2. y = e3x, so y = eu where u = (3x).

3. y = e sinx, so y = eu where u = (sinx).

• y = ln(something) For example:

1. y = ln(2x), so y = lnu where u = (2x).

2. y = ln(x2 + 2), so y = lnu where u = (x2 + 2).
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• Recall that the chain rule says: if y is a function of u(x) then
dy

dx
=
dy

du
× du

dx
.

• The following example shows the chain rule in action.

• We are differentiating a particular function y = (x3 + 1)2

that certainly requires the chain rule to differentiate.

• However, we can also differentiate this function by first
expanding it, then differentiating directly. We should get the
same answer both ways.

Example 13.7.2 Let y = (x3 + 1)2

(a) Find
dy

dx
using the chain rule.

Answer: Let u = x3 + 1 so y = u2.

Thus
dy

du
= 2u and

du

dx
= 3x2. From the chain rule,

dy

dx
=

dy

du
.
du

dx
= 2u× 3x2

= 2(x3 + 1)× 3x2

= 6x2(x3 + 1)

= 6x5 + 6x2

(b) Find
dy

dx
by first expanding y then differentiating.

Answer: y = (x3 + 1)2 = (x3 + 1)(x3 + 1) = x6 + 2x3 + 1,

so
dy

dx
= 6x5 + 6x2.
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• There is an informal way of describing the chain rule.

• If this way helps, then you can think of the rule like this.

• You “work from the outside, going inwards”.

Example 13.7.3 If y = (x3 + 1)2, find y′.

First, note that we have to use the chain rule.

Now, rewrite the function as y = (something)2, where
something = x3 + 1. We will worry about what to do with
something later; for the moment, we are just looking at the
outside bit of the function.

Then we differentiate (something)2. If we were differentiating
x2, the answer would be 2 × x. Thus here the answer is 2 ×
something.

Now we have finished with the outside bit of the function, so we
look at the inside bit; that is, we look at something = x3 + 1.
We need to differentiate it, so the derivative of x3 + 1 is 3x2.

Finally, the chain rule says that we need to multiply both
derivatives together, so

y′ = 2× something × 3x2 = 6x2(x3 + 1) = 6x5 + 6x2.

(Of course, if you think about what we have done above, then
the something is simply the function u(x), and all we are doing
is following the exact steps as listed in the statement of the
chain rule.)
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Question 13.7.4 Find the derivative of (3x2 + 4)10

Example 13.7.5 If y = sin(x3), find y′.

Let u = x3, so y = sinu.

Thus
dy

du
= cosu and

du

dx
= 3x2. From the chain rule,

dy

dx
=
dy

du
× du

dx
= cosu× 3x2 = cos(x3)× 3x2 = 3x2 cos(x3)

? ?

Question 13.7.6 Find the derivative of cos(3x2 + 4)
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Question 13.7.7 Let y = 4e3x+2. Find y′.
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Derivative of ekx.

As a special case of the chain rule, if k is a constant and y = ekx

then

y′ = kekx

(Note that the power of ekx remains unchanged.)

Example 13.7.8 If y = e−x + e4x then y′ = −e−x + 4e4x.

? ?

Question 13.7.9 Find the derivative of e2x + ln(2x+ 1).

? ?

Question 13.7.10 Find the derivative of (e2x + x2)7.
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13.8 Second derivatives

• Sometimes it’s useful to find the derivative of the derivative.

• We use the same rules as we used to find the derivative.
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Second derivatives.

Given a function y = f(x), its derivative is written as

f ′(x) or y′ or
dy

dx
We can find the derivative of the derivative, which is called the

second derivative. It is written as

f ′′(x) or y′′ or
d2y

dx2

Example 13.8.1 If f(x) = 16x2 +8x+4, find f ′(x) and f ′′(x).
Answer: Clearly, f ′(x) = 32x+ 8 and f ′′(x) = 32.

? ?

Question 13.8.2 Find f ′(x) and f ′′(x) if:

(a) f(x) = x3 − 6x2 + 3x− 4 sinx

(b) f(x) = lnx+ e2x + ex
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Question 13.8.3 Let f(x) = xe−x. (The graph is shown.)

(a) Find f ′(x).

(b) Solve f ′(x) = 0.

(c) Find f ′′(x).

–0.8

–0.6

–0.4

–0.2

0

0.2

1 2 3 4 5
x

f(x) = xe−x

MATH1040, Summer 2007/8. Section 13.8. Page 240



14 Applications of derivatives

Why are we doing this?

• Knowing the derivative of a function gives a lot of useful
information about the function, including:

– where the function is increasing or decreasing.

– where the function has peaks or troughs.

• This information can be used in a number of important
practical ways, such as:

– finding peaks and troughs allows the function value to be
maximised or minimised, leading to optimal values.

– solving production and economic (profit and cost)
problems.

– solving motion problems involving velocity, displacement
and acceleration.

• We will study a number of applications. All arise directly
from properties of the slope of a function.

• Make sure you are quite familiar with differentiation, as we
will continually apply the skills and rules developed in
Section 13.

• Topics in this section are:

– Tangent Lines.

– Derivatives and motion.

– Local maxima and minima.

– Some practical problems.
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14.1 Tangent Lines

• Given a curve, we can find a tangent line to the curve at a
given point.

• A tangent line touches the curve at the given point, and has
the same slope as the curve at that point.

tangent line

curve
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Tangent lines

Given a function, We can find the tangent to the graph of that

function at a given point by the following procedure:

1. First, find the derivative of the function.

2. Next, find the slope of the curve at the given point, by

substituting the given value of x into the derivative.

3. Finally, use the slope of the curve at that point as the gradi-

ent m in a straight line equation y = mx+c, and substitute

the coordinates of the given point into this equation to give

the value of c.

• The last step should be familiar: you are finding the
equation of a line given its gradient and a point on the line.
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Example 14.1.1 Given y = e0.5x, find the equation of the
tangent line to y at the point (0, 1).

Answer: Remembering that the derivative of ekx is kekx, we
have y′ = 0.5e0.5x.

At the point (0, 1) the slope of the curve is y′(0) = 0.5e0 = 0.5.
Hence the tangent line has equation y = 0.5x+ c.

To find the value for c, we substitute (0, 1) into this equation,
giving 1 = 0.5× 0 + c, so c = 1.

Hence the tangent line has equation y = 0.5x+ 1.

We can check that this is plausible. The figure shows the graph
of y = e0.5x and the graph of y = 0.5x+1. Clearly, the tangent
line looks to be correct.

0

2

4

6

–4 –3 –2 –1 1 2 3 4

x

y

e0.5x

0.5x+ 1
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Question 14.1.2 Let f(x) = x2 + 2x− 4.

(a) Find the equation of the tangent line to f(x) at (1,−1).

(b) Find the equation of the tangent line at (−1,−5).

(c) Sketch the tangent lines on the graph below.

–5

–4

–3

–2

–1

1

–3 –2 –1 1
x

y
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14.2 Derivatives and motion

• An important use of derivatives is in the study of motion.

• Given a moving object, three quantities with which you
should be familiar are:

– the displacement (similar to the distance) that the
object has travelled;

– the velocity (or speed) of the object; and

– the acceleration of the object.

• These words have meanings that are pretty similar to how
they are used in everyday conversation.

• One slight difference when studying them mathematically is
that there is usually a direction associated with them.

• The only directions we will encounter are positive and
negative.

• For example, when a ball is thrown in the air, we will assume
that the positive direction is upwards, and the negative
direction is downwards. Hence:

– the displacement of the ball is how far it is from the zero
position (possibly different to how far it has travelled);

– a displacement of 0 means the ball is on the ground;

– a positive displacement means the ball is above the
ground;

– a positive velocity means the ball is travelling upwards;

– a negative velocity means the ball is travelling
downwards; and

– the acceleration due to gravity is negative, as it is pulling
the ball in a downwards direction.
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• We are used to talking about distance, speed and
acceleration in everyday life. When doing so, we usually
include units in the measurements.

Example 14.2.1 Some examples of displacement are:

• a 100 metre (100m) race in the Olympic Games;

• an 8,000 kilometre (8000km) plane flight; and

• driving a car for 80 kilometres (80km).

Some examples of velocity are:

• a speed limit of 60 kilometres per hour (60 km/hr);

• a snail moving at 15 millimetres per minute (15 mm/min);
and

• a runner travelling at 10 metres per second (10 m/sec).

The units for measuring acceleration are less familiar. Some
examples are:

• a rocket accelerating at 5 metres per second per second (5
m/sec/sec); and

• the acceleration due to gravity on earth of 9.8 metres per
second per second (9.8 m/sec/sec).

• In our work we are only concerned with the mathematics, so
will usually ignore the units.

• We’ll simply describe displacement, velocity and acceleration
as numbers that may be positive or negative.

• It will usually be obvious which direction is positive and
which is negative.
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• In Example 14.2.1, an example of displacement was 80km,
and an example of velocity was 60 km/hr.

• Clearly, velocity is a change in distance over a given time
period (here, distance changes by 60km as time changes by 1
hour).

• Similarly, acceleration is a change in velocity over a given
time period.

• Recall that a derivative is a change in y compared to a
change in x.

• Then we have the following important results.
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Derivatives and motion.

If displacement, velocity and acceleration are considered as

functions of time, then:

• the derivative of displacement is velocity; and

• the derivative of velocity is acceleration.

• Of course, because velocity is the derivative of displacement
and acceleration is the derivative of velocity, acceleration is
the second derivative of displacement.

• It is customary to write S for displacement, v for velocity
and a for acceleration.

• Thus at any time t, displacement is S(t), velocity is v(t) and
acceleration is a(t).

• We have:

v = S′
(

=
dS

dt

)
, a = v′

(
=
dv

dt

)
= S′′

(
=
d2S

dt2

)
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Example 14.2.2

A ball is thrown vertically upwards into the air from the
ground. It is found that the displacement of the ball above
the ground at any time t is given by

S(t) = 25t− 5t2.

1. What is the velocity of the ball at any time t?

2. What is the acceleration of the ball at any time t?

3. What is the highest point the ball reaches?

4. When does the ball reach the ground again?

Before answering these questions, it’s useful to think about
how you could answer them.

For (1), all we need to do is differentiate S(t) to get v(t).

For (2), all we need to do is differentiate v(t) to get a(t).

For (3), we need to work out what determines the highest point
that the ball reaches. At this point, the ball has just stopped
moving up, and is just about to start moving down. Hence its
velocity must be 0. So if we solve v(t) = 0, we should get the
time at which it is at its highest point, and substituting that
value of t into S(t) will give us the displacement.

For (4), when it reaches the ground again, the displacement
must be 0. Hence if we solve S(t) = 0, that will give the time
at which the ball reaches the ground again.

continued...
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Example 14.2.2 (continued)
Answer to 1:

The velocity is given by v(t) = S′(t) = 25− 10t.

Answer to 2:

Acceleration is given by a(t) = v′(t) = −10.

The negative value for acceleration here means that the accel-
eration is not in the direction in which S is measured (upwards)
but in the opposite direction, back to the ground; of course, a
is caused by gravity.

Answer to 3:

We have v(t) = 0, so 25− 10t = 0,
so 25 = 10t, so t = 2.5. Then we substitute t = 2.5 into S,
giving

S(t) = 25× 2.5− 5× 2.52 = 31.25.

Thus 2.5 seconds after the ball is throw it has zero velocity,
and reaches its highest point above the ground of 31.25.

Answer to 4:

Solve S(t) = 0. Then 25t − 5t2 = 0, which we can solve using
the quadratic formula or by factorising. Let’s factorise.

We have t(25− 5t) = 0, so t = 0 or
25− 5t = 0, so t = 0 or t = 5.

Thus the ball is at ground level
at time t = 0 (when it is initially
thrown), and again at time t = 5.

S(t)

v(t)

a(t)
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14.3 Local maxima and minima

• A function’s derivative gives its slope at any point.

• If the slope is positive then the function is getting larger, or
increasing.

• If the slope is negative then the function is getting smaller,
or decreasing.

• Think about the special case where the derivative is 0.

• At such points the function is neither increasing nor
decreasing.
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Critical points.

Given a function f , the critical points or stationary points
of f are those points at which the derivative of f equals 0.

? ?

Question 14.3.1 On the following diagram, identify all regions
in which the function is increasing and those in which it is
decreasing. Show all critical points.

x

y

• Critical points are very important, so we need a technique
for finding them.
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Finding critical points.

Given a function f(x), to find the critical points of f we

1. Differentiate f .

2. Find any values of x for which f(x)′ = 0.

3. Substitute those values of x into f(x) to calculate the cor-

responding y values.

Example 14.3.2 Find all critical points of f(x) = 2x2+4x+6.
Answer: We have f ′(x) = 4x + 4. At any critical point we

have f ′(x) = 0. Hence 4x+ 4 = 0, so 4x = −4, so x = −1.

To find the y-value substitute x = −1
into the original function.
So f(−1) = 2× (−1)2 + 4×−1 + 6 = 4.

Hence there is one critical point at (−1, 4).

? ?

Question 14.3.3 Find all critical points of
y = 2x3 + 3x2 − 12x+ 4.
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• At a critical point we know that the function has slope zero,
so is neither increasing nor decreasing.

• The following diagram shows the three ways in which this can
happen; in each case, an arrow highlights the critical point.

• The critical point on the left is called a local maximum.

• The critical point in the middle is called a local minimum.

• The critical point on the right is called a point of
inflection.

• We will only encounter the first two, so you can ignore points
of inflection.

• Be familiar with this terminology:

– A local maximum is a peak (or hill) and a local minimum
is a trough (or valley).

– The plural of maximum is maxima and the plural of
minimum is minima.

• Usually, rather than simply finding critical points, you’ll be
asked to find and classify all critical points.

• This means that you need to find all critical points, and then
classify each one as a local maximum or a local minimum.
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• We’ll look at two rules for deciding whether a critical point is
a maximum or minimum.

• The first rule involves the first derivative, and thinking a bit
about what a maximum or minimum looks like.

• The second rule involves using the second derivative.

• You can use whichever rule you like, but we encourage you to
use the second rule as it involves less scope for error.
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First derivative test.

Given a function f , there is a local maximum at x = a if

f ′(x) > 0 for x < a (for x close to a)

f ′(a) = 0

f ′(x) < 0 for x > a (for x close to a)

There is a local minimum at x = a if

f ′(x) < 0 for x < a (for x close to a)

f ′(a) = 0

f ′(x) > 0 for x > a (for x close to a)

• This rule may look complicated, but it makes sense.

• It says that f has a local maximum if f ′ is positive before
x = a, zero at x = a and negative after x = a; thus the
function is increasing, then flat, then decreasing.

• Similarly, it says that f has a local minimum if the function
is decreasing, then flat, then increasing.
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Second derivative test.

To find all local maxima and minima of y = f(x):

(1) find the derivative f ′(x).

(2) find all values of x for which derivative is 0

(3) find the second derivative f ′′(x).

(4) for each value of x at which f ′ = 0, evaluate f ′′ at that

point. If the second derivative value is

• positive, then the function has a local minimum at that

point;

• negative, then the function has a local maximum at that

point;

• zero, then the test fails and we can’t conclude anything.

(We will not encounter this situation.)

Example 14.3.4 (From Example 14.3.2, f(x) = 2x2 + 4x+ 6
has a critical point at (−1, 4). Classify this critical point.

We answer this in two ways; using the first derivative test, then
the second derivative test.

First derivative test: We have f ′(x) = 4x+ 4, which is zero
at x = −1. When x is a bit smaller than −1 (say x = −1.1),
f ′ is negative. When x is a bit larger than −1 (say x = −0.9),
f ′ is positive. Hence the derivative goes negative, then 0, then
positive, so the critical point is a local minimum.

Second derivative test: We have f ′ = 4x + 4, so f ′′ = 4.
Hence the second derivative is positive, so the critical point is
a local minimum.
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Question 14.3.5 (See Question 14.3.3.) Classify the critical
points of y = 2x3 + 3x2 − 12x+ 4.

? ?

Question 14.3.6 Find and classify all critical points of the
function y = x2 − 2x+ 4 , then roughly sketch its graph.

14.4 Some practical problems

• Derivatives are useful in solving problems from construction,
economics, business operations and product design.

• Most businesses want to maximise profits or minimise costs.
If you know the profit or cost functions, then optimal levels of
production will occur at the critical points of those functions.
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Example 14.4.1 The ordering department for a company finds
that if they place x orders for materials each year, the total

associated costs are C(x) = 1000x +
25000
x

dollars for x > 0.
What number of orders per year minimises costs, and what do
the costs equal at that number of orders?

Answer: To minimise C(x) we first differentiate, giving

C′ = 1000− 25000

x2
.

Next we let the derivative equal 0. So

1000− 25000

x2
= 0

⇒ 1000 =
25000

x2

⇒ 1000x2 = 25000

⇒ x2 = 25

so x = 5 or x = −5.

As x > 0, so x = 5. Next we need to check whether this is a
minimum or a maximum. The second derivative is

C′′ =
50000

x3

which is positive when x = 5. Hence this is a local minimum.
Thus costs are minimised when x = 5, and the costs equal

C(5) = 1000× 5 +
25000

5
= $10000.

C(x) C′(x)
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Example 14.4.2 A farmer wants to build a rectangular pen
for his sheep. One side is a straight river. For the other three
sides he has 200m of fencing to use. What is the maximum
area of pen he can make?

river

y

xx

Let the pen be as shown, so the fenced perimeter is of length
2x + y. If all 200m of material is used then 2x + y = 200, so
y = 200− 2x. The area of the pen is A = xy.

Before we solve the problem, let’s see that it’s sensible to use
a maximisation approach. We’ll try various values of x and y,
and see what happens to the area.
When x = 1, y = 198 and A = xy = 198.

When x = 2, y = 196 and A = 2× 196 = 392.

When x = 3, y = 194 and A = 3× 194 = 582.

When x = 10, y = 180 and A = 1800.

When x = 95, y = 10 and A = 950.

Hence, as the values of x and y change, A also changes, so it
seems sensible that some values for x and y maximise A.

Substituting y = 200− 2x into the expression for A gives A =
x(200− 2x) = 200x− 2x2.

So A′ = 200 − 4x, and this equals 0 when x = 50. Thus we
have a critical point when x = 50. Now A′′ = −4, which is
negative, so the critical point is a local maximum.

Hence when x = 50 the area A is a maximum, equal to
50(200− 100) = 5000 m2, so the pen measures 50m ×100m.
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Question 14.4.3 The cost of publishing a book is $12,000 plus
$6.50 per copy. The demand function is p(x) = 25 − 0.001x,
which gives the price $p which should be charged in order to
sell x copies. If profits are to be maximised, how many should
be produced, and what should the selling price be?
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Question 14.4.4 Find the smallest possible value of the sum
of a positive real number x and its inverse.
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Question 14.4.5 The base profit per hectare of a certain crop
is $600. Each tonne of fertiliser costs $200, and the additional
profit from applying x tonnes of fertiliser per hectare is 800

√
x.

What amount of fertiliser per hectare will maximise profit?
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15 Integration

Why are we doing this?

• We have seen that differentiation allows us to find the
derivative or slope of the function; this has many uses.

• Sometimes, the reverse step is useful: given the derivative of
a function, how can we find the original function?

• The reverse process is called integration.

• Just as the derivative of a function gives the slope of the
function, there is also a useful geometric interpretation of the
integral: the integral of a function gives the area between the
function and the x-axis.

• We don’t cover integration in much detail: if you do more
calculus, you’ll study it in much more detail.

• We’ll see a few rules which make the task easier, but mostly
we’ll use smart trial and error.

• Topics in this section are:

– Introduction to integration.

– Rules for integration.

– Initial conditions.

– Definite integrals and areas.

– Integrals and motion.

MATH1040, Summer 2007/8. Section 15.0. Page 261



15.1 Introduction to integration

• Given a function, we can usually find its derivative.

• We have seen a number of rules for finding derivatives.

• What about the reverse step? That is, if we are given the
derivative of a function, can we find the original function?

Example 15.1.1 Let F (x) be an unknown function whose
derivative is 6x. Find F (x).

Answer: Use smart trial and error, and think about how dif-
ferentiation works. When we differentiate x to some power, we
subtract one from the power. Here, the derivative includes x
to the power 1, so the original function must have involved x2.
So let’s try x2 as our first guess at the original function. Dif-
ferentiate x2 and we get 2x, but we wanted to get 6x. Hence
the original function should be 3 times what we guessed, so it
is 3x2. (Check this; the derivative of 3x2 is 6x.)

? ?

Question 15.1.2 Find F (x) where F (x) is an unknown func-
tion whose derivative is 3x2.

Find G(x) where G(x) is an unknown function whose derivative
is ex.

Find H(x) where H(x) is an unknown function whose deriva-
tive is 4x3 + 3x2 + 2x+ 1.
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Integration.

The process of finding an unknown function F (x) from its

derivative f(x) is called integration.

We say that F (x) is an antiderivative or integral of f(x).

We write F (x) =
∫
f(x) dx, pronounced “F(x) is the integral

of f(x) with respect to x”.∫
f(x) dx is called an indefinite integral.

• Don’t be confused by the notation in integration.

• The
∫

sign simply means ‘the integral of’.

• The dx is equivalent to the dx written in
dy

dx
.

• Integration is much harder to do than differentiation.

• In this course we will only cover some fairly basic functions,
whose integrals are fairly easy to find.

• The technique we will use can be summarised as follows.

– To find F (x) =
∫
f(x) dx, make an informed guess as to

what F (x) might be.

– Differentiate F (x) and see if you get the right answer.

– If you are not correct, change your guess for F (x) and
repeat.

• The following example illustrates an important feature of
integration: multiple functions have the same derivative.
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Example 15.1.3 Let F (x) = x2 + 4, G(x) = x2 − 2 and
H(x) = x2.

Then F ′(x) = 2x, G′(x) = 2x and H ′(x) = 2x.

Then what does
∫

2x dx equal?

Does it equal F (x), or G(x), or H(x), or even something else?

• When we differentiate, the constant term disappears.

• Thus, when we integrate, we don’t know what the constant
term was.

• The constant could have been any value at all.

• To resolve this we take a special step.
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Constant of integration.

Whenever we find an indefinite integral, we include a constant
of integration in the answer, which takes the form of ‘+C’.

Example 15.1.4∫
2x dx = x2 + C

∫
3x2 dx = x3 + C∫

7 dx = 7x+ C

? ?

Question 15.1.5 Find
∫

(3x2 + 2x+ 4)dx.
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15.2 Rules for integration

• We said before that the main technique we shall use is “guess
the answer and check it”.

• There are a few rules which help us to improve our guesses.

• Look at the following rules: each comes from a rule for
differentiation.

• There are examples on the next page.
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Rules for integration.
Rule 1 ∫

xn dx =
1

n+ 1
xn+1 + C

Rule 2 If k is a constant then∫
kf(x) dx = k

∫
f(x) dx

Rule 3 ∫
(f(x) + g(x)) dx =

∫
f(x) dx+

∫
g(x) dx

Rule 4 If k is a constant then∫
ekx dx =

1
k
ekx + C

Rule 5∫
cosx dx = sinx+ C,

∫
sinx dx = − cosx+ C

Rule 6 ∫
1
x
dx = lnx+ C
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Example 15.2.1 Here are some examples of Rule 1.∫
x2 dx =

1
2 + 1

x2+1 + C =
1
3
x3 + C∫

x4 dx =
1

4 + 1
x4+1 + C =

1
5
x5 + C

Example 15.2.2 Here are some examples of Rule 2.∫
3x2 dx = 3×

∫
x2 dx = 3× 1

3
x3 + C = x3 + C∫

10x4 dx = 10×
∫
x4 dx = 10× 1

5
x5 + C = 2x5 + C

Example 15.2.3 Here are some examples of Rule 3.∫
3x2 + 2x dx =

∫
3x2 dx+

∫
2x dx = x3 + x2 + C∫

ex + 1 dx =
∫
ex dx+

∫
1 dx = ex + x+ C

Example 15.2.4 Here are some examples of Rule 4.∫
e3x dx =

1
3
e3x + C∫

6e2x dx = 3e2x + C

Example 15.2.5 Here are some examples of Rule 5.∫
sinx− 2 dx = − cosx− 2x+ C∫
2x+ cosx dx = x2 + sinx+ C
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Example 15.2.6 Here are some examples of Rule 6.∫
1
x

+ 2x dx = lnx+ x2 + C∫
2
x
dx = 2 lnx+ C

• Any problem you encounter will be solved by using the six
rules in conjunction with guess and check.

? ?

Question 15.2.7 Find
∫

4x− 6x2 dx.

? ?

Question 15.2.8 Find
∫
e3x + 4 dx.

? ?

Question 15.2.9 Find
∫

1
x

+ 2x+ 3x2 dx.
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? ?

Question 15.2.10 Find
∫

0 dx.

? ?

Question 15.2.11 Find
∫

4 + 6t dt.

? ?

Question 15.2.12 Find
∫

3 sinx+ 2 cosx dx.

15.3 Initial conditions

• When we covered exponentials, we briefly discussed initial
conditions.

• For example, we said things like ‘the population at time
t = 0 is 100’.

• This gave us extra information about the problem being
studied.

• Initial conditions are also useful when integrating, as they
allow us to find an exact value for the constant of integration.
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Example 15.3.1 Let F (x) =
∫

(2x + 4) dx and F (1) = 0.

Find F (x).

Answer: Clearly, F (x) = x2 + 4x + C. But F (1) = 0, so
12 + 4× 1 + C = 0, so C = −5. Hence F (x) = x2 + 4x− 5.

Note that F (x) = x2 + 4x − 5 is the only function whose
derivative is 2x+ 4 and which has F (1) = 0.

? ?

Question 15.3.2 Let LetF (x) =
∫
e2x dx, with F (0) = 1.

Find F (x).
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15.4 Definite integrals and areas

• Until now, we have simply said that indefinite integrals are
the opposite of derivatives.

• There is another very important interpretation of integrals.

• In fact, the integral of a function gives us the area under the
graph of the function; that is, between the graph and the
x-axis.

• Showing that this is true (and also considering what happens
when the answer is negative) is beyond the scope of this
course.

• The following two graphs each show the graph of y = x2 as x
goes from 0 to 3.

• On the left we have shaded the area under the curve from
x = 1 to x = 2.

• On the right we have shaded the area from x = 1 to x = 3.

• Clearly, the two areas are different.

1 2 33 0
x

y

210
x

y

• We need some way to specify how much of the area we want
to find: clearly, the area from x = 1 to x = 2 is smaller than
the area from x = 1 to x = 3.
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• To do this, we need to introduce a new type of integral,
called the definite integral.

• The definite integral looks very similar to the indefinite
integral which we have already covered.

• The main difference is that we now include two limits of
integration, and we do something extra after we have found
the antiderivative.

• The limits of integration are the values of a and b in the
following definition.

• They specify the range of x values to use for the area
calculation; in the definition, we will go from x = a to x = b.

! !

#

"

 

!

Definite integral.

Given a curve f(x), to find the area under the curve from x = a

to x = b, we write ∫ b

a
f(x) dx,

which is pronounced ‘the integral of f(x) from x = a to x = b’.

Example 15.4.1 We could calculate the areas under the curves
on the previous page by finding∫ 2

1
x2 dx and

∫ 3

1
x2 dx.

• A vital theorem shows us how to use the antiderivative to
find this area under the curve.
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Fundamental theorem of calculus.

If F (x) is an antiderivative of f(x), then∫ b

a
f(x)dx = F (b)− F (a)

• We can restate the fundamental theorem of calculus as a
simple procedure.

! !

'

&

$

%

Finding definite integrals.

To evaluate

∫ b

a
f(x) dx:

1. Find an antiderivative of f(x), say F (x).

2. Evaluate F (b).

3. Evaluate F (a).

4. Calculate F (b)− F (a).

• There is a standard way for setting out these problems.

• First, find the antiderivative.

• Then write the antiderivative surrounded by large square
brackets.

• Write the limits of integration outside the brackets, the
larger value at the top and the other value at the bottom.

• Evaluate the antiderivative at the top limit of integration.

• Evaluate the antiderivative at the bottom limit of
integration.

• Subtract the two to obtain the answer.

• Study the following example.
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Example 15.4.2 Find the area under the curve y = x2 from
x = 1 to x = 2.

x

y

21

The area is equal to
∫ 2

1
x2 dx. Then

∫ 2

1
x2 dx =

[
1
3
x3 + C

]2

1

=
(

1
3
× 23 + C

)
−
(

1
3
× 13 + C

)
=

(
8
3

+ C

)
−
(

1
3

+ C

)
=

8
3

+ C − 1
3
− C =

7
3
.

? ?

Question 15.4.3 Find
∫ 2

0
2x dx.
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• Notice what happens to the constant of integration when
calculating definite integrals: it always cancels out.

• When calculating definite integrals, you don’t need the
constant of integration. You can include it if you like, but
you must remember to cancel it before giving your final
answer.

Example 15.4.4 Find the area under the curve y = cosx from
x = 0 to x =

π

2

1

x

y

π
2

Area is
∫ π

2

0
cosxdx =

[
sinx

]π
2

0
= sin

π

2
− sin 0 = 1− 0 = 1

? ?

Question 15.4.5 Find
∫ 2

1
(3x2 + 2x+ 1)dx
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? ?

Question 15.4.6 Find
∫ 1

0
(2x+ ex) dx.

? ?

Question 15.4.7 Find
∫ e

1
(x−1 + 2x) dx
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15.5 Integrals and motion

• We have seen that the derivative of displacement is velocity,
and the derivative of velocity is acceleration.

• We also know that the reverse of differentiation is integration.

• Combining these concepts, we can see that velocity is the
integral of acceleration, and displacement is the
integral of velocity.

• Thus, given an expression for an object’s acceleration we can
work out its velocity at any time, and we can work out its
displacement at any time.

• Usually in these problems we use t (time) instead of x to
represent the independent variable, so we will integrate with
respect to t.

• Often there will be an initial condition, such as “displacement
at time t = 0 is 0”. We can use this initial condition to
obtain an exact value for the constant of integration.

Example 15.5.1 A non-moving car with displacement 0 ac-
celerates at a constant rate of a = 2. Find expressions for its
velocity v(t) and displacement S(t) at any time t.

We have v(t) =
∫
a(t) dt =

∫
2 dt = 2t+ C.

At t = 0 the car is stopped, so v(0) = 0, so C = 0. Hence
v(t) = 2t.

Now S(t) =
∫
v(t) dt =

∫
2t dt = t2 + C. At t = 0 the

displacement is 0, so S(0) = 0, so C = 0. Hence S(t) = t2.
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? ?

Question 15.5.2 A rocket takes off vertically from a launch
pad at time t = 0, with velocity v(t) = 2t+1 metres per second.
At t = 1, the displacement of the rocket is 6 metres.
(a) Find an expression for the rocket’s displacement S(t) at
any time t.

(b) When does the rocket’s displacement equal 34 metres?
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? ?

Question 15.5.3 Using the information from Question 15.5.2,
find how far the rocket travels between time t = 3 and t = 8.
Find this answer in 2 ways, by:
(a) substituting values for t into the expression for displace-
ment found in Question 15.5.2; and

(b) solving the problem as a definite integral.
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(. . . , . . . ), 51
<,≤, 13, 52
>,≥, 13, 52
[. . . , . . . ], 51
∩, 81, 92
cos θ, 204
cos x, graph, 209
∪, 81, 92
∅, 79
∈, 79
ln x, 194
log x, 194
| |, 14
\, 81, 92
sin θ, 204
sin x, graph, 209
⊆, 80
tan θ, 204
tan x, graph, 209
{}, 79
e, 189
ex, 188
x-intercept, 112, 117
y-intercept, 112, 117
y-intercept, interpreting, 119
N, 12
Q, 12
R, 13
Z, 12

absolute value, 14
acceleration, 245
adding fractions, 23
amplitude, 212
angle, obtuse, 206
antiderivative, 263
area under curve, 270
axis, 108

base, 26, 61, 178
BEDMAS, 16

cancelling fractions, 21
CAST, 208
chain rule, 233
chance, 87
circle, equation with centre (0, 0),

201
circles, 201
coefficient, 34
coin, 88
common denominator, 22
composition of functions, 158
compound interest, 183
conditional probability, 97
constant of integration, 264
converting degrees to radians, 205
converting fractions, 22

converting radians to degrees, 205
coordinates, 108
critical point, 250
critical points, classifying , 252
critical points, finding, 251
cubic, 161

definite integral, 271
definite integrals, finding, 272
degree, 161
degrees to radians, conversion, 205
denominator, 21
dependent variable, 109
derivative, 215
derivative, ln x, 226
derivative, ex, 225
derivative, ekx, 238
derivative, trig functions, 224
derivatives and motion, 247
derivatives, meaning, 216
dice, 89
differentiation, 215
differentiation, simple, 220
displacement, 245
distance formula, 133
dividing fractions, 23
division rules, 33
domain, 149

earthquake, 195
element, 78
elimination, 139
empty set, 79
equation, 42
equation of a line, given m and 1

point, 127
equation of a line, given 2 points, 125
equation of line, 124
equation, standard form, 115
equivalent fraction, 21
event, 87
exclusion, 93
expanding, 37
expanding a sum, 70
exponent, 26, 61, 178
exponential decay, 186
exponential decay function, 187
exponential decay, properties, 187
exponential function, 178
exponential function, general form,

191
exponential function, the, 188
exponential growth, 179
exponential growth function, 182
exponential growth, properties, 181
expression, 31

factor, 19
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factoring, 171
factorising, 40
fair experiment, 87
first derivative test, 253
formula, 42
fraction, 21
frequency, 212
function, 145
function, decreasing, 250
function, increasing, 250
functions, non-linear, 197
Fundamental theorem of calculus, 272

Gold Lotto, 103
gradient, 117
gradient, finding, 122
gradient, interpreting, 118
graph, 108
graph, sketching, 109

horizontal lines, 120

inclusion, 93
indefinite integral, 263
independent events, 99
independent variable, 109
index, 26, 61
inequalities, 13, 52
initial conditions, integration, 268
input, 145
integers, 12
integral, 263
integration, 263
integration rules, 265
integration, limits, 271
intersecting lines, 135
intersection, 81
interval endpoints, 53
intervals, 51
inverse function, 193
inverse of a fraction, 21
irrational numbers, 13

like terms, 34
likelihood, 87
linear, 113, 161
local maximum, 252
local minimum, 252
logarithm, 193

maxima, 252
mean, 76
minima, 252
multiplication rules, 33
multiplying fractions, 23
mutually exclusive, 95

natural logarithm, 194
natural numbers, 12
number line, 13

numerator, 21

ordered pairs, 108
origin, 108
output, 145

parallel, 129
per annum, 184
perpendicular, 129
point of inflection, 252
polynomial, 161
polynomial, terminology, 162
polynominal, shapes, 164
power, 26, 61, 178
power rules, 67
prime number, 20
probability, 87
product of primes, 20
product rule, 228
product rule for independent events,

99
product rule for probability, 98
Pythagoras’ theorem, 131

quadratic, 161, 162
quadratic formula, 167
quadratic, solving, 167, 171
quotient rule, 231

radians, 205
radians to degrees, conversion, 205
range, 149
rational numbers, 12
real numbers, 13
rearranging equations, 44
reducing a sum, 73
Richter scale, 195
roots of a polynomial, 164

sample space, 87
second derivative, 239
second derivative test, 254
set, 78
set-difference, 81
sigma, 69
simplest form of a fraction, 21
simplest form of a surd, 58
simultaneous equations, 135
slope, 216
solution to an equation, 47
solving absolute values, 49
solving inequalities, 54
solving simultaneous equations using

elimination, 139
solving simultaneous equations using

substitution, 136
square root, 28
square roots; properties, 56
stationary point, 250
straight line plot, 112
subset, 80



substituting into equations, 43
substitution, 136
subtracting fractions, 23
summation notation, 69
superimposed lines, 135
surd, 58

tangent line, 242
transposing equations, 44
transposition rules, 44
trigonometry, 203

union, 81
unit circle, 202, 207

variable, 31
velocity, 245
Venn diagram, 84
vertical lines, 120


