$$-x - 5y = 29$$
 (1)

$$5x - y = -15 \quad (2)$$

We solve these using substitution. Rearranging equation (1) gives

$$x = -5y - 29 \qquad (3)$$

Substituting equation (3) into equation (2) gives

$$5(-5y - 29) - y = -15.$$
 (4)

Then expanding the brackets in equation (4) gives

$$-25y - 145 - y = -15, \quad (5)$$

and simplifying equation (5) gives

$$-26y - 145 = -15. (6)$$

Then solving equation (6) gives -26y = 130 so $y = \frac{130}{-26} = -5$.

Next we substitute the value for y into equation (3) to obtain the value for x, giving

$$x = -5 \times -5 - 29$$
 so $x = -4$.

Hence the simultaneous solution to equations (1) and (2) is x = -4 and y = -5.

(As always, check your answers by substituting into equations (1) and (2).

(1)
$$\rightarrow -x - 5y = -1 \times -4 - 5 \times -5 = 4 + 25 = 29$$
, as required.

(2)
$$\rightarrow 5x - y = 5 \times -4 - 1 \times -5 = -20 + 5 = -15$$
, as required.

Hence the answer is correct.)

(b) First we number the equations for convenience.

$$3x - y = -5 \quad (1)$$

$$-3x + y = -3$$
 (2)

Now we add both sides of equations (1) and (2), giving

$$3x - 3x - y + y = -5 - 3. (3)$$

Simplifying equation (3) gives

$$0+0=-8.$$
 (4)

Then solving equation (4) gives 0 = -8.

This statement is never true, so there is no solution to the given equations.

(c) First we number the equations for convenience.

$$-5x - y = 7 \tag{1}$$

$$-5x - y = -7$$
 (2)

We solve these using elimination. Multiply equation (1) by -1, giving

$$5x + y = -7 (3)
-5x - y = -7 (4)$$

$$-5x - y = -7$$
 (4)

Now we add both sides of equations (3) and (4), giving

$$5x - 5x + y - y = -7 - 7. (5)$$

Simplifying equation (5) gives

Then solving equation (6) gives 0 = -14.

$$0+0=-14$$
. (6) This statement is never true,

so there is no solution to the given equations.

(d) First we number the equations for convenience.

$$\begin{array}{rcl}
-7x & + & 6y & = & -7 & (1) \\
7x & - & 6y & = & 7 & (2)
\end{array}$$

Now we add both sides of equations (1) and (2), giving

$$-7x + 7x + 6y - 6y = -7 + 7. (3)$$

Simplifying equation (3) gives

$$0+0=0.$$
 (4)

Then solving equation (4) gives 0 = 0.

This statement is always true, so there is an infinite number of solutions to the given equations.

2. (a) First we number the equations for convenience.

$$\begin{array}{rcrrr}
-2x & + & 2y & = & 4 & (1) \\
-5x & - & 5y & = & 30 & (2)
\end{array}$$

Next we take out any common factors.

Now we add both sides of equations (3) and (4), giving

$$-x - x + y - y = 2 + 6.$$
 (5)

Simplifying equation (5) gives

$$-2x + 0 = 8.$$
 (6)

Then solving equation (6) gives -2x = 8 so $x = \frac{8}{-2} = -4$.

Next we substitute the value for x into equation (3) to obtain the value for y, giving

$$-1 \times -4 + y = 2$$
 so $1y = -2$.

Hence the simultaneous solution to equations (1) and (2) is x = -4 and y = -2.

(As always, check your answers by substituting into equations (1) and (2).

$$(1) \rightarrow -2x + 2y = -2 \times -4 + 2 \times -2 = 8 - 4 = 4$$
, as required.

(2)
$$\rightarrow -5x - 5y = -5 \times -4 - 5 \times -2 = 20 + 10 = 30$$
, as required.

Hence the answer is correct.)

(b) First we number the equations for convenience.

$$\begin{array}{rcl}
-2x & - & y & = & 5 & (1) \\
x & + & 5y & = & -5 & (2)
\end{array}$$

We solve these using substitution. Rearranging equation (1) gives

$$y = -2x - 5 \tag{3}$$

Substituting equation (3) into equation (2) gives

$$5(-2x-5) + x = -5.$$
 (4)

Then expanding the brackets in equation (4) gives

$$-10x - 25 + x = -5, \quad (5)$$

and simplifying equation (5) gives

$$-9x - 25 = -5. (6)$$

Then solving equation (6) gives -9x = 20 so $x = \frac{20}{-9} = -\frac{20}{9}$.

Next we substitute the value for x into equation (3) to obtain the value for y, giving

$$y = -2 \times \frac{-20}{9} - 5$$
 so $y = \frac{-5}{9} = -\frac{5}{9}$.

Hence the simultaneous solution to equations (1) and (2) is $x=-\frac{20}{9}$ and $y=-\frac{5}{9}$

(As always, check your answers by substituting into equations (1) and (2).

(1)
$$\rightarrow -2x - y = -2 \times -\frac{20}{9} - 1 \times -\frac{5}{9} = \frac{40}{9} + \frac{5}{9} = 5$$
, as required.

(2)
$$\rightarrow x + 5y = 1 \times -\frac{20}{9} + 5 \times -\frac{5}{9} = \frac{-20}{9} - \frac{25}{9} = -5$$
, as required.

Hence the answer is correct.)

(c) First we number the equations for convenience.

$$\begin{array}{rclrcrcr}
4x & - & 7y & = & -3 & (1) \\
4x & - & 7y & = & -6 & (2)
\end{array}$$

We solve these using elimination. Multiply equation (1) by -1, giving

$$\begin{array}{rcl}
-4x & + & 7y & = & 3 & (3) \\
4x & - & 7y & = & -6 & (4)
\end{array}$$

Now we add both sides of equations (3) and (4), giving

$$-4x + 4x + 7y - 7y = 3 - 6. (5)$$

Simplifying equation (5) gives

$$0+0=-3.$$
 (6)

Then solving equation (6) gives 0 = -3.

This statement is never true, so there is no solution to the given equations.

(d) First we number the equations for convenience.

$$3x + 2y = -1$$
 (2)

Next we take out any common factors.

$$3x + 2y = -1$$
 (4)

We solve these using elimination. Multiply equation (3) by -1, giving

$$\begin{array}{rcrrr}
-3x & - & 2y & = & 1 & (5) \\
3x & + & 2y & = & -1 & (6)
\end{array}$$

$$3x + 2y = -1$$
 (6)

Now we add both sides of equations (5) and (6), giving

$$-3x + 3x - 2y + 2y = 1 - 1. (7)$$

Simplifying equation (7) gives

$$0+0=0.$$
 (8)

Then solving equation (8) gives 0 = 0.

This statement is always true, so there is an infinite number of solutions to the given equations.

- 3. (a) 2 points on the track are $(x_1, y_1) = (-3, 10)$ and $(x_2, y_2) = (1, 2)$. So $m = \frac{y_2 y_1}{x_2 x_1} = \frac{2 10}{1 + 3} = \frac{-8}{4} = -2$. Hence y = -2x + c. Now (1, 2) on the line, so $2 = -2 \times 1 + c \Rightarrow c = 4 \Rightarrow y = -2x + 4$.
 - (b) Points $(x_1, y_1) = (-1, 6)$ and $(x_2, y_2) = (-3, 2)$. So $m = \frac{y_2 y_1}{x_2 x_1} = \frac{2 6}{-3 + 1} = \frac{-4}{-2} = 2$. Hence y = 2x + c. Now (-3, 2) on the line, so $2 = 2 \times -3 + c$ \Rightarrow 2 = -6 + c \Rightarrow c = 8 \Rightarrow y = 2x + 8.
 - (c) If Sassie's ride is parallel to Dagwood's, then the slope of Sassie's ride must also have slope m=2. So y=2x+c. Now Sassie starts at (-2,0), so $0=2\times -2+c \Rightarrow c=4$, so y=2x+4. To find the crossing point, 2 equations: y=2x+4 (Sassie) and y=-2x+4 (train). Hence $2x+4=-2x+4 \Rightarrow 4x=0 \Rightarrow x=0$. Therefore $y=2\times 0+4$, so y=4. Sassie crosses the railway line at (0,4).
- (a) Let x = # whiskeys and y = # wieners. So y = x + 3 (1) and 6x + 2y = 54(2) $6x + 2x + 6 = 54 \Rightarrow$ Substitute (1) into (2), $6x + 2(x + 3) = 54 \Rightarrow$ y = 9. She buys 6 whiskies and 9 wieners. Check!
 - (i) x+y+z=24 (1) $y=\frac{1}{3}(x+z)$ (2) x=2z (3) (ii) Now these are 3 equations and 3 unknowns, but we solve in the usual way. Use (3) to (b) (i) x + y + z = 24
 - substitute into (1) and (2):
 - $(1) \Rightarrow 2z + y + z = 24 \Rightarrow y + 3z = 24$
 - $(2) \Rightarrow y = \frac{1}{3}(z + 2z) = \frac{1}{3}(3z) = z \Rightarrow y = z$ (5)

Now substitute (5) into (4) $\Rightarrow z + 3z = 24 \Rightarrow 4z = 24 \Rightarrow z = 6$. Therefore from (5) y=6. Substitute z=6 and y=6 into (1) $\Rightarrow x+6+6=24 \Rightarrow x=12$.

She spends 12 hours studying, 6 hours sleeping and 6 hours writing poetry.

Finally, you should check these answers by substituting into the three original equations. When you do so, you'll see that they are all true.