Find the roots of the following quadratics: 1.

a.
$$y = (x-1)(x+6)$$

b.
$$y = x^2 + 4x + 3$$

c.
$$y = x^2 + 3$$

d.
$$y = x^2 - 10x + 25$$

e.
$$y = (x-1)(x-7)$$

f.
$$y = x(x+11)$$

g.
$$y = x^2$$

h.
$$v = x^2 - 3x$$

i.
$$v = 3x^2 + 2x + 4$$

j.
$$4(2x - 6)(x + 16) = 0$$

k. $3x^2 + 2x + 4 = 10$

k.
$$3x^2 + 2x + 4 = 10$$

- 2. Without using a calculator, find:
 - a. $log_{10}100$
 - b. log₄16
 - c. log₉3
 - d. ln e³
- In each case, find $\frac{dy}{dx}$. 3.

a.
$$y = 3x - 8$$

b.
$$v = -7x^2 - 14$$

c.
$$y = (x+2)(x-1)$$

d.
$$y = \frac{3}{x^2}$$

e.
$$y = e^x + 3x^2$$

f. $y = x^2 lnx$

f.
$$y = x^2 lnx$$

- (4) If \$100 is invested for 3 years at a rate of 24% per annum, find the final balance if interest compounds:
 - (i) annually?
 - (ii) every six months?
 - (iii) monthly?
 - (iv) continuously?
 - 5 Jim's parents invest \$1000 in a bank account on the day he is born, earning 20% interest per annum, for him to spend when he reaches the age of 30.
 - (a) If interest compounds annually, what will be the account balance when he turns 30? (Use 1.2^{30} = 237.38.)
 - (b) If interest compounds continuously, what will be the account balance when he turns 30? (Use $e^6 = 403.4.$
 - (c) Mary is born on the same day as Jim, but her parents do not start an investment account until her 20th birthday. Assuming her account also earns 20% compounding continuously, how much do they need to invest so that her account balance at age 30 exactly matches Jim's?
 - (d) If Mary's parents can find an account which earns 30% compounding continuously, how much do they need to invest on her 20th birthday so that her account at age 30 exactly matches Jim's?