MATH1040 Summer Assignment 3 Solutions

1.
$$\frac{2(x-3)}{7} + 5 = 9$$
$$\frac{2(x-3)}{7} = 4$$
$$2(x-3) = 28$$
$$x-3 = 14$$
$$x = 17$$

2.
$$\left| -2x + 6 \right| = 2$$

 $-2x + 6 = 2$ or $-2x + 6 = -2$
 $-2x = -4$ $-2x = -8$
 $x = 2$ $x = 4$

3.
$$5x + 2 > 3x - 4$$
 $(-3, \infty)$

$$2x + 2 > -4$$

$$2x > -6$$

$$x > -3$$

4. a)
$$\sqrt{40}$$
 b) $2\sqrt{3} \times 4\sqrt{6}$
 $= \sqrt{4 \times 10}$ $= 8\sqrt{18}$
 $= 2\sqrt{10}$ $= 8\sqrt{9 \times 2}$
 $= 8 \times 3\sqrt{2}$
 $= 24\sqrt{2}$

5. a)
$$x^{5}y^{3} \times x^{4}y^{2} \div (x^{6}y^{4})$$
 b) $(p^{2}q^{3})^{2} \times p^{4}q^{2} \div (pq)^{8} \times p^{0}$

$$= x^{9}y^{5} \div (x^{6}y^{4}) = p^{4}q^{6} \times p^{4}q^{2} \div (pq)^{8} \times 1$$

$$= x^{3}y^{1} = p^{8}q^{8} \div p^{8}q^{8} \times 1$$

$$= x^{3}y = 1 \times 1$$

$$= 1$$

6. a)
$$(-2)^4$$
 b) -3^4 c) 2^{-4}

$$= -2 \times -2 \times -2 \times -2 = -3 \times 3 \times 3 \times 3 = \frac{1}{2}$$

$$= 16$$

$$= -81$$

$$= \frac{1}{2 \times 2 \times 2 \times 2}$$

$$= \frac{1}{16}$$

d)
$$(-2)^{-3}$$
 e) $(-2)^2 - 2$ f) $-(-2^2) - 2$
= $\frac{1}{(-2)}$ = $4 - 2$ = $-(4) - 2$
= $\frac{1}{-2 \times -2 \times -2}$ = 2 = -6
= $-\frac{1}{8}$

7.
$$\sum_{i=-1}^{3} (ix+3) = 5$$
LHS = $(-x+3) + (0x+3) + (x+3) + (2x+3) + (3x+3)$
= $5x + 15$
RHS = 5
So $5x + 15 = 5$
 $5x = -10$

8. a)
$$2h + 4h + 6h + 8h + 10h = \sum_{i=1}^{5} 2ih$$

x = -2

b)
$$\frac{-4}{5} + \frac{-4}{6} + \frac{-4}{7} + \frac{-4}{8} = \sum_{i=5}^{8} \frac{-4}{i}$$

9. Wally ran x laps. Wayne ran 8 more, so x + 8.

So,
$$x + x + 8 = 46$$

$$2x = 38$$

$$x = 19$$

So Wally ran 19 laps and Wayne ran 19 + 8 = 27 laps (check: 19 + 27 = 46)

10. Let the first book have x pages. The second book therefore has 40 + 4x pages.

So,
$$x + 40 + 4x = 390$$

 $5x = 350$
 $x = 70$

So the first book has 70 pages and the second book has $40 + 4 \times 70 = 320$. (check: 70 + 320 = 390)

11. Let the middle number be n. The number one less than n would be n-1, and the number one more than n would be n+1.

If we square
$$n$$
 we get n^2 . When we multiply $n-1$ by $n+1$, we get $(n-1)(n+1)$

$$= n^2 + n - n - 1$$

$$= n^2 - 1$$

Hence the rule always works! Try it with three other consecutive numbers.