Assignment 5 Solutions

1. Solve the following simultaneous equations:

a)
$$2x + 3y = 19$$

(1)

$$3x - 2y = -4$$

(2)

$$(1) \times 2 \quad 4x + 6y = 38$$

(3)

$$(2) \times 3 \quad 9x - 6y = -12$$

(4)

$$(3) + (4)$$
 $13x = 26, x = 2$

Substitute x = 2 into (1), $2 \times 2 + 3y = 19$

$$3y = 15$$

$$y = 5$$

So the solution is (2, 5)

b)
$$2x - 4y = 4$$
 (1)

$$-x + 2y = -2$$
 (2)

$$(2) \times 2 \quad -2x + 4y = -4 \tag{3}$$

(2) + (3) 0 = 0 which is true, so the lines are the same.

2. If
$$f(x) = x - x^2$$
 and $g(x) = x + 2$

a)
$$f(3) = 3 - 3^2 = 3 - 9 = -6$$

b)
$$g(-4) = -4 + 2 = -2$$

c)
$$g(0) = 0 + 2 = 2$$
, so $f(2) = 2 - 2^2 = 2 - 4 = -2$

d)
$$f(x + 2) = x + 2 - (x + 2)^2 = x + 2 - (x^2 + 4x + 4) = -x^2 - 3x - 2$$

e)
$$g(x - x^2) = x - x^2 + 2$$

3. (1)
$$f(z) = 5z^2 + 6z - 7$$
, so $f(-4) = 5 \times (-4)^2 + 6 \times (-4) - 7 = 80 - 24 - 7 = 49$

(2)
$$-2y(-2y-3) = 0$$
, so

$$-2y = 0$$

$$y = 0$$

$$or$$

$$-2y - 3 = 0$$

$$-2y = 3$$

$$y = -\frac{3}{2}$$

(3)
$$-2y^2 + 12y - 10 = 0$$
, so we use $a = -2$, $b = 12$, $c = -10$ in the quadratic formula. Hence

$$y = \frac{-12 \pm \sqrt{12^2 - 4 \times (-2) \times (-10)}}{2 \times (-2)}$$

$$= \frac{-12 \pm \sqrt{144 - 80}}{-4}$$

$$= \frac{-12 \pm \sqrt{64}}{-4}$$

$$= \frac{-12 + 8}{-4} \text{ or } \frac{-12 - 8}{-4}$$

$$= \frac{-4}{-4} \text{ or } \frac{-20}{-4}$$

$$= 1 \text{ or } 5$$

(4) To solve each of these, remember that if
$$a \times b = 0$$
, then either $a = 0$ or $b = 0$; and also that $0^n = 0$ for any natural number n . Then:

i.
$$4x(-7-3x)=0$$
, so

$$4x = 0$$

$$x = 0$$

$$x = 0$$

$$-7 - 3x = 0$$

$$-3x = 7$$

$$x = -\frac{7}{3}$$

ii.
$$(-5y + 5)(-6 + 8y) = 0$$
, so

$$-5y + 5 = 0$$

$$-5y = -5$$

$$y = \frac{-5}{-5}$$

$$y = 1$$

$$or$$

$$-6 + 8y = 0$$

$$8y = 6$$

$$y = \frac{6}{8}$$

$$y = \frac{3}{4}$$

iii.
$$(-9-6z)(-2z+3)=0$$
, so

$$(-6z)(-2z + 3) = 0$$
, so
 $-9 - 6z = 0$ or $-2z + 3 = 0$
 $-6z = 9$ $-2z = -3$
 $z = \frac{9}{-6}$ $z = \frac{3}{2}$

iv.
$$(-4x+4)^1 = 0$$
, so $-4x+4=0$, so $-4x=-4$, so $x=\frac{-4}{-4}$, so $x=1$

$$(5) \ (-4)^0 = 1$$

(6)
$$f(z) = -7(|z|)^2$$

When determining the domain of this function, we need to keep in mind the following:

- · we can square any number;
- we can find the absolute value of any number.

Hence, the domain of this function is $(-\infty,\infty)$, i.e. any value of z can be substituted into f.

(7)
$$f(x) = 10 \left(\sqrt{x} \right)^2$$

When evaluating the range, we need to keep in mind the following (starting with variable x):

- square root is always positive or 0, so $\sqrt{x} \ge 0$;
- squaring always gives a positive or 0, so $(\sqrt{x})^2 \ge 0$.

Hence, the range of this function is $[0, \infty)$.

(8)
$$f(z) = \frac{-7}{|z| - 3}$$

When determining the domain of this function, we need to keep in mind the following:

- denominator of a fraction cannot be 0, so $|z| 3 \neq 0$;
- so $|z| \neq 3$;
- we can find the absolute value of any number, it will always give as a positive or 0, so $z \neq \pm 3$.

Hence, the domain of this function is $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$, i.e. $z \neq \pm 3$.

4. Letting p be the cost of a pony ride and c the cost of a camel ride, 3p + 2c = 8.5 and 2p + 3c = 9

$$3p + 2c = 8.5$$
 (1)

$$2p + 3c = 9 \tag{2}$$

$$(1) \times 2 \qquad 6p + 4c = 17 \tag{3}$$

$$(2) \times -3 \quad -6p -9c = -27$$
 (4)

$$(3) + (4)$$
 $-5c = -10$, so $c = 2$

Substitute c = 2 into (1), $3p + 2 \times 2 = 8.5$

$$3p = 4.5$$

$$p = 1.5$$

So a pony ride costs \$1.50 and a camel ride costs \$2. (Check your answer by substituting into (2).)

5. (a) Two points on Marvin's ride are (2, 7) and (1, 1). So $m = \frac{y-y}{y-x} = \frac{7-1}{2-1} = 6$

Hence y = 6x + c. Now (1, 1) is on the line, so $1 = 6 \times 1 + c$. So c = -5 and y = 6x - 5.

(b) If Charlie's ride is parallel to Marvin's, then the slope of Charlie's ride must also be m=6. y=6x+c. Now Charlie starts at (2,5), so $5=6\times 2+c$. So c=-7 and y=6x-7.

To find the crossing point, use two equations: y = 6x - 7 (Charlie) and y = 3x - 2 (train). As both the LHSs are the same (y), the RHSs must also be the same. So 6x - 7 = 3x - 2, so 3x = 5, $x = \frac{5}{3}$.

Therefore $y = 6 \times \frac{5}{3} - 7$, y = 3. Charlie crosses the railway track at $(\frac{5}{3},3)$