Solution for Section 3.6 Question 1

1. We are asked to prove, using the method of contradiction, the statement: "n in.jpg (595 bytes)Z and "primes p,  if p | n2, then p | n.

Proof The negation of the given statement is:  $ n inred.jpg (595 bytes)Z and $ a prime p such that  p | n2  and  pnotdivred.jpg (589 bytes)n.

We now assume that the negation is true and we need to show that this leads to a contradiction.

Consider the prime factorization (from the Unique Factorization Theorem) of each of n and n2

Suppose that the unique prime factorization of n is:   n = p1e1 · p2e2 · ... · pkekand since pnotdiv.jpg (589 bytes)n, we know that  pnoteqred.jpg (604 bytes)pi  for any 1 leq.jpg (599 bytes) i leq.jpg (599 bytes) k.

The unique prime factorization of n2 is: n2 = (p1e1 · p2e2 · ... · pkek)2 =  p12e1 · p22e2 · ... · pk2ek, and since p | n2, we know that  p = pi for some 1 leq.jpg (599 bytes) i leq.jpg (599 bytes) k.
(Keep in mind that p is a prime.)

We have now discovered that if the negation of this statement were true, then both pnoteqred.jpg (604 bytes)pi and p = pi for some 1 leq.jpg (599 bytes) i leq.jpg (599 bytes) k. This is a contradiction and therefore the negation must be false. Hence the original statement: "n in.jpg (595 bytes)Z and "primes p,  if p | n2, then p | n, must be true.

Back to Section 3.6