Hint for Section 5.2 Question 1

1. Let P(x) be the predicate ``x Î P'', Q(x) be the predicate ``x Î Q'', and let U be the universal set. Then  P Í P È Q is equivalent to
(" x Î U) (P(x) ® (P(x) Ú Q(x))).

To prove this is true we can use a truth table:

p q   p Ú q p ® (p Ú q)
         
         
         
         


Fill in the first two columns with the four possible combinations of truth values for p and q. Then fill in the remaining columns, refering back to the logical connectives from Chapter 1 if you need to.

Back to Section 5.2
Full solution