Chaos

Chaos 1s fundamental to understanding complex systems.
It lies at the border between mathematical analysis and
the computational techniques used in complex systems
research.

In this lecture we will look at chaotic systems including
demonstrations of the Lorenz system, the double
pendulum and, in more detail, the simple but powerful
example of the logistic map.

1.1 Lorenz

In 1962, Edward Lorenz was studying a simplified
weather model. Lorenz’s model had three variables. He
could plug arbitrary values into the equations, iterate
them on a computer, and then stop the simulation.

While running a particularly interesting simulation,
Lorenz had to stop the system prematurely. Later, he
wanted to continue the simulation where he left off so he
entered in the last known values and continued the
simulation. The simulation continued as it had before,
but with a slight deviation. Small differences soon
became large differences, and in a short time the system
was nowhere near where 1t had been before.
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In 1962, everyone believed that all dynamical systems
ultimately settled into predictable patterns. How had
Lorenz’s small system produced such different behaviour
on the second run?

What happened was that the printout truncated the last
few digits of the variables so that when Lorenz re-
entered the values there was a tiny difference that
eventually grew to create totally different system
behaviour. The system exhibited sensitive dependence
on initial conditions. Lorenz had discovered chaos!

Lorenz wrote up his experience for a journal article, but
it took a decade or so for his discovery to become known
in the physics and mathematics community.

A trajectory in phase space for the Lorenz system:

Try predicting the behaviour of this!
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1.2 Defining Chaos

e Chaos 1s the irregular, unpredictable behaviour of
deterministic, nonlinear dynamical systems.

o In a deterministic system the time evolution is
exactly specified. There 1s no external
randomness.

o Nonlinear systems contain processes whose
behaviour is not directly proportional to the input.
Instead there may be a quadratic or more
complicated relationship.

e Chaos is a nonlinear phenomenon that appears in a
broad range of real world and mathematical models.

e Computational techniques are essential to
ivestigating chaos since most nonlinear systems are
impossible to solve analytically.

e Chaos 1s characterised by sensitive dependence on
initial conditions which results in unpredictable
behaviour.

The tiniest effect can grow until the system’s future
becomes completely unpredictable. This is known as
the butterfly effect.

“If a butterfly flaps its wings in Tokyo, then a month
later it may cause a hurricane in Brazil.”

e Chaos 1s everywhere in the real world. Applications
include cellular biology, economics, weather, quantum
physics...
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1.3.1 Linear Maps

e A map i1s just a function such that for every element of
one set there is a unique element of another set.

e Before we get to the logistic map, here are some
simple, linear maps. Can you predict their behaviour
at some distant time?

x(t+l) = 2 x(1)
x(t+1) = -x(1)

x(t+1) =x@)/2 +1/2
x(t+1) =1-x(t)/2

o Does x oscillate, grow unbounded, approach a fixed
point or behave chaotically?

o Think of a system that the behaviour of each
equation could represent.

MATH1070, 2005. Complex Systems. 4




1.3.2 The Logistic Map

This simple nonlinear system exhibits rich chaotic
behaviour and allows us to get an intuitive feel for
how chaos works.

The logistic map is defined by the iterative equation:
xX(t+1) = rx(t) (1-x(1)
It models population growth in a limited environment:

— x 1s the population size divided by the carrying
capacity of the environment

— r1s the reproduction rate (» is between 0 and 4)

The model assumes that the reproduction rate is
dependent on the available resources. When the
population is high the available resources are reduced
so the reproductive success 1s reduced.

o What happens at t+1 if x(1)=0?
o What happens at t+1 if x(1)=1?
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The curve x(t+1) = r x(t) (1-x(1)).
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1.3.3 Dynamics

Phase space trajectories represent a ‘trace’ of the
dynamical behaviour of the system (like a long
exposure photograph).

Phase space easily identifies stable fixed points or
periodic dynamics.

For 1D systems the phase space 1s (x(?),x(t+1)).

Dynamics in phase space: go to the curve (find x(t+1)
from x(?)), then go to diagonal (update x(?)). Repeat.

Fixed points exist where the function intersects the
line x(t+1)=x(?).
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Fixed point dynamics, r=2.8

Fixed point is stable (see phase space (b)).

MATH1070, 2005. Complex Systems.

1.0




1
08} PP PP D000 000000000 000000000000000000000000000]
06} °
S || TOceces00000000008000000000500800038560500800850
0.4
0.2
O 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
t=time
(a)
1.0 1.0
I |
LS
>
) AP “R:“:'
p s
—9—
0.0 0.0
0.0 1.0 0.0 1.0
(b) (c)

Period-two dynamics, r=3.2

Fixed point is unstable (see (b)) but period-two cycle is
stable.
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Period-four dynamics, r=3.52
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Chaotic dynamics, r=4

Phase space (b). Nearby trajectories diverge (c).

e The system doesn’t grow unbounded, approach a fixed
point or become periodic. It is chaotic.

o Can you still make short term predictions?
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1.3.4 Fixed Points

e For all discrete systems, fixed points can be found by
setting:

x(t) = x(t+1) = x*, say,
and solving for x*.
e For the logistic map:
x(t+1) = f(x(t)) = r x@®)(1-x(1),
so solve:
x*=rx*(1-x*).

o How do you find the period-two orbit?

1.3.5  Stability

e If the magnitude of the gradient at the fixed point,
[f°(x*)|, 1s less than 1, the fixed point 1s stable and
attracting.

If it 1s greater than 1, it is unstable and repelling.

e This holds for all discrete systems.
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1.3.6 Bifurcation

e As rincreases the value of the fixed point increases.
At some critical » the fixed point becomes unstable
and the system displays period-two behaviour with the
system oscillating between two values (solid lines).
The old fixed point still exists but it i1s now unstable
(dotted line). As r increases further the period-two
cycle will bifurcate again producing period-four
behaviour.

e Each period doubling spans a shorter amount of space
than the previous doubling. Eventually the period
doublings converge to what looks like an infinite-
period attractor.

1.0 0.9

0.0 , 0.8
0.65 1.0 0.85

e Notice the self-similarity of the bifurcation diagram.
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1.4 Complex Systems

e Simple systems don’t necessarily display simple
behaviour.

e We have seen unpredictable chaotic motion in
mathematical systems with only a few interacting
variables.

e What happens in systems with hundreds of interacting
parts?

e What type of behaviour do complex systems display?
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