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(1) Consider the expression

I =

∫ 1

0

∫ 2z

0

∫ 1

z

dx dy dz +

∫ 1

0

∫ 1+z

2z

∫ 1

y−z

dx dy dz.

(a) Determine the value of I by evaluating the iterated integrals given.

(b) Rewrite I using the order of integration dy dx dz and evaluate the new expression,
verifying your answer in part (a).

(2) Consider a torus whose equation in terms of spherical coordinates (r, θ, φ) is r = 2 sin φ
for 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π. Determine the volume of the region bounded by the
torus by calculating a triple integral using spherical coordinates.

(3) Consider set of variables (u, v, w) such that

x = (h + u sin v) cos w,

y = (h + u sin v) sin w,

z = u cos v,

for some fixed, non-negative h. If we specify h ≥ 1, then the region represented by the
set of points

{(u, v, w) | 0 ≤ u ≤ 1, 0 ≤ w ≤ 2π, 0 ≤ v ≤ 2π},
describes a torus (doughnut!) of radius 1, whose centre is a distance h from the (x, y, z)
origin. Determine the volume of this torus by calculating a triple integral using the
(u, v, w) coordinate system.

(4) Consider a solid cylinder of radius R, a cylindrical shell of outer radius R and inner
radius a, and a spherical shell with outer radius R and inner radius a. All three objects
have the same constant density. Find the heights of the cylinders such that all three
objects have the same moments of inertia when rolling down a slope. Which cylinder
has the larger height?

(5) Let C be a circle of radius 1 centred at the point (x, y) = (0, 1). Consider the vector
field F (x, y) = x2i + xyj. Calculate the two line integrals over C,

∮

C

F · T ds and

∮

C

F · n ds,

where T is the unit tangent vector to C traversed in an anticlockwise direction, and n
is a unit normal vector to C directed away from the centre of the circle.


