19 The fundamental theorem for line integrals, path independence

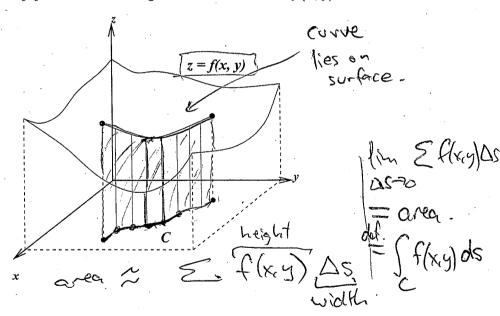
By the end of this section, you should be able to answer the following questions:

- How do you evaluate line integrals?
- What is the fundamental theorem for line integrals and its consequences?
- What is a path independent line integral and what are its connections with conservative vector fields and line integrals over closed curves?

19.1 Line integrals in the plane

Recall the definite integral $\int_a^b f(x) dx$ gives the net area above the x-axis and below its image y = f(x). We can generalise this.

Consider the following problem: How do we calculate the area of the region between the curve C in the x-y plane and its image on the surface z = f(x, y)?



If the curve C can be parametrised by r(t) = x(t)i + y(t)j for $a \le t \le b$, then the area is given by the formula

area =
$$\int_{C} f(x, y) dS = \int_{a}^{b} f(x(t), y(t)) |r'(t)| dt$$
,

where dS is the infinitesimal element of arclength of C.

smooth= cts, ctr derivatives.

19.2Line integrals of vector fields

We can also consider integrating a vector field over a curve in the plane.

Let C be a piecewise continuous smooth curve in the x-y plane joining points A and

Let C be a piecewise continuous smooth curve in the x-y plane joining points A and B. Let
$$F(x,y) = F_1(x,y)i + F_2(x,y)j$$
 be a vector field. A line integral is given by
$$\int_C F(r) \cdot dr = \int_C (F_1(x,y)dx + F_2(x,y)dy) = \int_C F(r(t)) \cdot r'(t) dt \qquad \text{expressed in } F(r(t)) \cdot r'(t) dt \qquad \text{for ways.}$$

where r = xi + yj, $\sqrt{dr = dxi + dyj}$ and x, y are parameterised by $t \in [a, b]$.

Note that we can also write the line integral as $\int_C \mathbf{F}(x,y) \cdot \mathbf{T}(x,y) \, dS$ where T is a unit tangent vector to the curve C at the point (x,y) on C.

In the case F is a field of force, you should already be able to determine the work done by F in moving a particle along a curve C. Namely, you should already know that

work =
$$\int_{a}^{b} \left[F(r(t)) \cdot \frac{r'(t)}{|r'(t)|} \right] |r'(t)| dt$$

$$= \int_{a}^{b} F(r(t)) \cdot r'(t) dt.$$

19.3 Evaluating line integrals

In general, to evaluate a line integral

$$\int_C f(x,y) \ dS,$$

which includes line integrals of the form

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \mathbf{F} \cdot \frac{\mathbf{r}'}{|\mathbf{r}'|} dS,$$

we start by parametrising C with r(t) and in the integral replace dS by |r'(t)| dtThen evaluate the integral as a definite integral in t. The bounds of integration for t are those values corresponding to the endpoints of C.

19.3.1 Example: let A = (0,1), B = (1,2). Evaluate $\int_C ((x^2 - y)dx + (y^2 + x)dy)$ along the curve C given by: (i) the straight line from A to B; (ii) the parabola $y = x^2 + 1$ from A to B.

39 D B
A (ii)
\times
(i) Line from A Ats B [y=x+1]
parameterise cure
$r(t) = t_i + (t+i)_i, o(t+i)$
$\int \left(\left(x^2 - y \right) \frac{dx}{dt} + \left(y^2 + x \right) \frac{dy}{dt} \right) dt \neq$
$= \int_{0}^{\infty} \left(\left(t^{2} - (t+i) \right) \cdot 1 + ((t+i)^{2} + t) \cdot 1 \right) dt$
= 5/3.

(ii) along
$$[y=x^2+1]$$

 $y(t) = ti + (t^2+1)j + 0!ti$.
 $x = t , dx = 1 , y = t^2+1, dy = 2t .$

$$\int = \int \left(t^2 - (t^2+1) \right) \cdot \left(t + (t^2+1)^2 + t \right) 2t dt$$

$$= 1 - 2 .$$

Note the line integrals in the previous example were path dependent. In other words, they have different values for different paths.

We will now investigate path independent line integrals.

19.4 Line integrals of conservative vector fields, path independence. $\mathcal{F} = \sqrt{f}$

If F is a continuous vector field with domain D, we say the line integral $\int_C F \cdot dr$ is path independent if

 $\int_{C_2} F \cdot dr = \int_{C_2} F \cdot dr$

for any two paths C_1 and C_2 in D that have the same end points.

19.4.1 The fundamental theorem for line integrals

If C is a smooth curve determined by r(t) for $t \in [a, b]$ and f(x, y) is differentiable with ∇f being continuous on C, then

Proof:
$$\int_{C} \nabla f \cdot d\mathbf{r} = f(r(b)) - f(r(a)).$$

$$d\mathbf{r} = d\mathbf{x} \cdot \mathbf{i} + d\mathbf{y} \cdot \mathbf{j}$$

$$\nabla f = \frac{\partial f}{\partial \mathbf{x}} \cdot \mathbf{i} + \frac{\partial F}{\partial \mathbf{y}} \cdot \mathbf{j} \qquad f(\mathbf{x}(h), \mathbf{y}(h))$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\frac{\partial f}{\partial \mathbf{x}} \cdot d\mathbf{x} + \frac{\partial f}{\partial \mathbf{y}} \cdot d\mathbf{y}) d\mathbf{f}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\frac{\partial f}{\partial \mathbf{x}} \cdot d\mathbf{x} + \frac{\partial f}{\partial \mathbf{y}} \cdot d\mathbf{y}) d\mathbf{f}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

$$= \int_{C} (\nabla f) \cdot d\mathbf{r} = \int_{C} (\nabla f) \cdot d\mathbf{r}$$

One consequence is that for conservative vector fields ∇f , we have

$$\int_{C_1} \nabla f \cdot d\mathbf{r} = \int_{C_2} \nabla f \cdot d\mathbf{r}.$$

That is, the line integral of a conservative vector field is path independent.

It turns out, the converse is also true. Suppose F is continuous on an open, connected region D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is path independent in D, then F is conservative.

Proof:

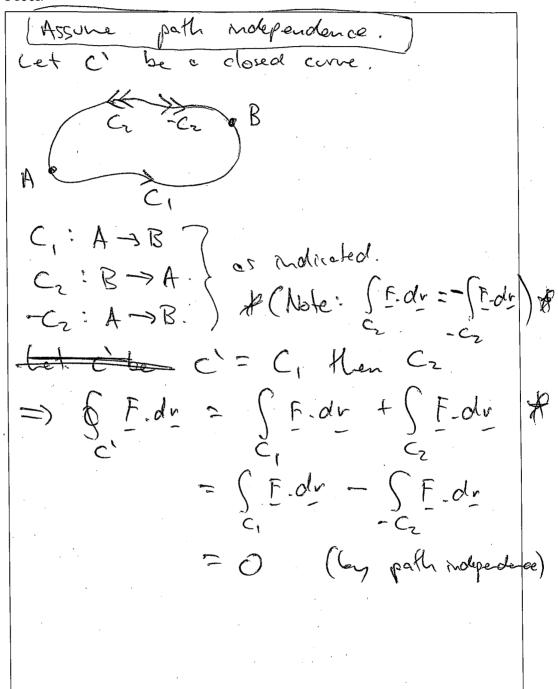
Stewart p1084-1085. (Theorem 4).

Open region: every point in the region is the centre of some disc lying entirely in the region (ie. an open region doesn't include the boundary points).

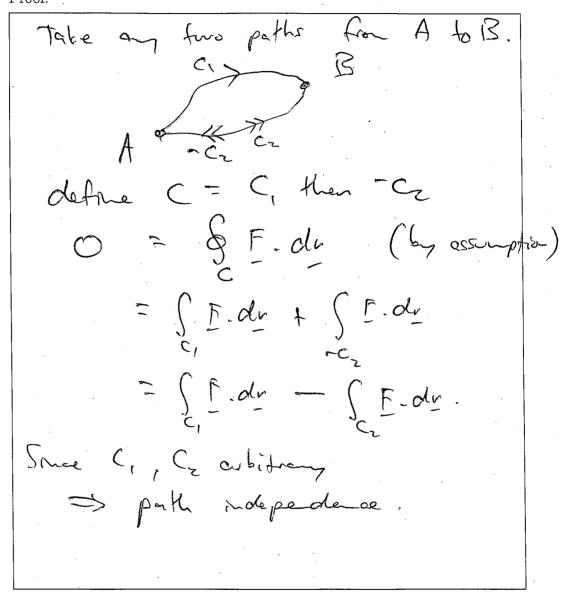
Connected region: Any two points in D can be joined by a path lying entirely in D.

Another interesting result is that if $\int_C \mathbf{F} \cdot d\mathbf{r}$ is path independent in some region D, then $\oint_{C'} \mathbf{F} \cdot d\mathbf{r} = 0$ for *every* closed path C' in D. Here the symbol " \oint " indicates the integral is over a *closed* curve.

Proof:



Perhaps it is not surprising that the converse is also true. That is, if $\oint_{C'} \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C' in some region D, then $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ is path independent in D. Proof:



We are looking at these results carefully because we ultimately want a simple way of checking whether or not a vector field is conservative. We are not quite there yet, but in the next section, we will arrive at a surprisingly simple test for a conservative vector field.

Note also that more details of these proofs (with slightly more mathematical rigour) can be found in Stewart, pages \\ \frac{1110 - 1113.}{}