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2 Exact first order ODEs (”7 867 ce & DiPriaa

By the end of this section, you should be able to answer the following questions
about first order ODEs:

¢ How do you identify an exact ODE?

e How do you solve an exact ODE?

. Nwhat, itions-is-arsalutior o an [VP problem unigue?,

2.1 Definition

First recall that if z = f(z,y) is a differentiable function of z and y, where z = g(¢)
and y = h(t) are both differentiable functions of ¢, then z is a differentiable function
- of t whose derivative is given by the chain rule:

d:_0fds  0fdy
dt Oz dt Oydt
Now suppose the equation
| | flay) =
defines y implicitly as a function of z (here C is a constant). Then y = y(z) can be

shown to satisfy a first order ODE obtained by using the chain rule above. In this
case, z = f(z,y(z)) = C, so

(0=1) dz drdr ' dydx
= (Fr iy = 0] | e

dz gdx afa’,y

A first order ODE of the form
| Py + Qe =0 0
is called exact if there is a function f(x,y) (compare (2) with (1) above) such that
fol@,y) = P(z,y) and fy(z,9) = Q(z,9).
The soiution is then given implicitly by the equation
o) =
The constant C' can usually be determined by some kind of “initial condition”.

Given an equation of the form (2), how do we determine whether or not it is exact?
There is a simple test. B
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2.2 Test for exactness

axraot's Ham
fﬁl\

Let P, @, aP, and gQ

be continuous over some region of interest. Then

d
P(z,y)+ Q(fﬁ,y)ﬁ =0

i cact ODE ift
1S an exac \L 5]3 8Q

dy Oz

everywhere in the region.

ek _
S’\‘ chw-} >

The problem of actually determining f(z,y) is still outstanding. Consider the fol- -

lowing example.

£% Q

2.3 Example: 2z + Y —l-(xgy' =0 @QQE& 7
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2.4 Almost exact ODEs and integrating factors

Let’s say that we have an equation

dy
P(CL,@/) + Q(m,y)% =0
such that 9P 80
oy " oz
The test we have just seen tells us that the ODE is not exact. Are we still able to do
anything with it? Here we consider using an “integrating factor”, which is different
to the one introduced to solve linear ODEs. '

The idea is to multiply the ODE by a function hA(z,y) and then see if it is possible
to choose h(z,y) such that the resulting equation

(5, 9)Pl2,4) + h(z, 1)@z, 1) 3 = 0

is exact. We know from the test that this new equation is exact if and only if

0 0
@(hP) = g(hQ)»

Let’s see if we éan find such a functior{: 4

test= W, PR = hQrhQ
";=> L’\JPD F’lﬂx@\ '\‘L\(p\j’@v:> SO
( Circt ovolay PDE T h Q/ )

In general, the equation for A(z,y) is usually just as difficult to solve as the original

ODE. In some cases, however, we may be able to find an integrating factor which is
a function of only one of the variables z or y. Let’s trylh = h(z): |
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