20 Green’s theorem and a test for conservative
fields

By the end of this section, you should be able to answer the following questions:

e What is Green’s theorem and under what conditions can it be applied?
e How do you apply Green’s theorem?

e Given a vector field in two dimensions, how can we test whether or not it is
conservative?

20.1 The story so far Tin ZD .

The following diagram summarises the relationships between conservative vector
flelds, path independent line integrals and closed line integrals we have seen so far.

F=9{

F' conservative

# Mawo_;‘w( '\/(""’*—-
for loew onbeymls.

/ F . dr path independent
c

. %F-drzO,VclosedC’
c =

20.2 Clairaut’s theorem and consequences (S ’i"e"‘”/# 'qu')

Suppose a function of two variables f is defined on a disc D that contains the point
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are both continuous on D, then .
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Say we have a conservative vector field F = F1i+ F5j. This means that there exists
an f(z,y) such that
of of

Fi=—, F=—
YT 0 TP oy
An immediate consequence of Clairaut’s theorem is that
OF; B2 f hel o0 f _0FR

0y  Oydx T. o0xdy Oz

In otherwords, we have the following:

If F'= Fii+ Fyj is a conservative vector field, then

R _om

dy Oz

Let’s add this to our diagram:

F' conservative

OF, OF,

/O F - dr path independent )

7{ F.dr =0, Vclosed C
c

If we can reverse the new arrow, then we would have the criterion that we need!
That is, the condition :
8F1 i 6F2

By Oz

would be a test for a conservatlve vector field. To do this, we requlre one more piece
of the puzzle. That is Green s theorem.
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20.3 Green’s theorem @ 5*:‘»».)0‘& Y

Let D be a region in the z-y plane bounded by a piecewise-smooth, s’i_rr_lgl_e__gl_o_sgc_{

F
curve C, which is traversed with D always on the left. Let Fi(z,y), Fa(z,y), %_yl
traversed witl .
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This theorem relates a double integral to a line integral over a closed curve. For ex- o IN .

ample, we can use Green’s theorem to evaluate complicated line integrals by treating

them as double 1ntegrals or vice versa.

Regarding our discussion on conservative vector fields, we have the following corol-
lary to Green’s theorem:

Ifgfi:—a-&, then %F-dr=0
8y 8:1: c

Note that F = Fyi + Fyj.

If we add this to our diagram, we can now link any four statements via the arrows.
In otherwords all four statements are equivalent.

IF conservative

/ F' - dr path independent -
c

7§F~dr=0,vclosedc '
C

In particular, we now have a test to determme whether or not a given two dimen-
sional vector field is conservative:

oR _oR;
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The vector field F' is conservative if and only if



20.3.1 Find the work done by the force F = z2yi + zy2j anticlockwise

around the circle with centre at the origin and radius a.
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F = xy \ 4 (?i?*grf‘};&\

2zy dz + (z* + 3y?) dy, where C is the
c
path from (0,1) to (1,0) along y = (z — 1)? and then from (1,0) to

20.3.2 Evaluate the line integral

(2,1) along y =z — 1.
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F (3 +’L~WJ\‘ r (-5 1)3

20.3.3 Evaluate (3 + 2zy)dz + (z* — 3y° )dy where C is the curve parametrlsed

by r(t) = (1 cos(mt))i + (1 + sin 3(mt))j for 0 < t <1/2.
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