21 Flux of a vector field

By the end of this section, you should be able to answer the following questions:

o What is the flux of a constant vector field across a flat surface in 3D?

o What is the flux of a vector field across a plane curve in 2D?

In this section we introduce the concept of flur: In three dimensions, the flux of a

vector field across a given surface is defined to be the “flow rate” of the vector field
through the surface.

Since many vector fields involve no motion (eg. electric fields, magnetic fields), this
definition can be very difficult to comprehend at first. A nice context for working
with flux in order to understand its definition is by considering the velocity vector
of a fluid (so now we do have motion). In three dimensions, the flux of a fluid across
a surface is given in units of volume per unit time. In other words, the flux tells us
how much of the fluid (volume) passes through a given surface in one second.
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Consider a river flowing at a constant velocity of 2m/s in only one direction. Now
imagine placing a 3m square fishing net into the river so that it somehow stays

perpendicular to the flow of the river. What is the flux of the water through the
net?
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Now if we rotate the net through an angle 6, what is the flux through the net?
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21.1 Flux in 2D

Before we look at the flux of a vector field through more general surfaces, let’s
look at flux in two dimensions, by considering the flow of a two dimensional-fluid

through a curve in the 2-y plane. Note that in thls context of a fluid in 2D, flux has
dlmensmns area per unit time. v e\o cr‘

To start, consider the problem of calculating the flux of a fluid with constant velomty
v = 2¢ through a line segment C' perpendicular to the flow, where C is given by

C={(z,y) |z=2, 2<y <6}
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Now consider calculating the flux of the velocity vector v(z,y) in the z-y plane
through a curve C. (” fafaw"\ﬁc Co M) ’

We first divide C up into arcs of length AS, and approzimate v as constant over
each arc. '

C

This constant vector over each arc shall be evaluated at a representative point in
each arc, say P* = (z*,y*). We also approximate the arc as a straight line, so that

AS‘ ~ \/(Az)? + (.Ay)2 ~ |r'(t)] At.

The component of v which is perpendicular to C' (over AS) is & v(P*) - n(P*). We
then have ,
flux through one arc z(v(P*) : n(P*))AS.

= total flux through C = Z’U(Pi*) -n(F)AS;. \
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If we take the limit as AS — 0, we obtain an exact expression for the flux over the

entire curve C as a line integral: [ e T*\‘g o, 1 ]

Flux = / C(’v : n>d8, o H ( ’F(?((’Q) 0l3>
T .
where n is a unit vector normal to C.

"~ We use this expression as a definition of flux of any two dimensional vector field v
across a plane curve C. Note then that

dimensions of flux (in 2D) = (dimensions of v) x (distance).

- 21.1.1 Evaluating flux in 2D

To evaluate the line integral in the definition of flux, we need a parametrisation of
C, say r(t) = z(t)i + y(t) for a <t < b (say). We define / "i*'\f “5 Wt )
. . QV‘

rt)=21+7 ] \y AL
A unit tangent vector to C' is then given by
| _
Ir'(£)]

By the definition of vector cross product, and since k is a unit vector normal to the
z-y plane, being careful of the direction of n, we can take
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where v(z,y) = vi(z,y)i + v2(z,y)j. Noting also that in the integral we have
t\dS = |r'(t)| dt,) we then have a means of evaluating the line integral (2D flux
~integral) as : ' :

t=b
/ v-ndS= (v1(t)y — va(t)2) dt.
c

t=a
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21.1.2 Calculate the flux of v

-~

across the line z =2 (for 2 < y < 6)
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21.2 Owutward flux across a closed curve in the plane

Let C be a piecewise-smooth, simple closed curve. Let Ul(i y), va(z,y) be contin-
uous in the region bounded by C. (Note that these are some of the condltlons of
Green’s theorem!)

The net outward flux of v = v, + vo7 across C' is given by

e ——

Net outward flux = ?4 v-n dS,

C

- where n is a unit vector normal to C , directed outward from the region bounded by
C. ‘ ?os e O(Wtfi‘a\—\ )

21.2.1 Calculate the outward flux of v = 2yt +xyj across the curve from
(2,0) to (-2,0) via the semiciréle of radius 2 centred at the origin
(for y > 0) followed by the straight line from (-2,0) to (2 0).
C=C,U Gy
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