22 Dive'rgence of a vector field (div)

By the end of this section, you should be able to answer the following questions:

e How do you calculate the divergence of a given vector field?
e What is the signiﬁcanbe of divergence?

o How does it relate to flux?

In this section we introduce the concept of divergence of a Vector field. -
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22.1 Calculating divergence v

oo

Let
'U(QT, Y, Z) = ’Ul(xa Y, Z)’L + UQ(m: Y, Z)J + ’U3(.’17, Y, Z)ki
be a differentiable vector function. Then the function

. _87}1 Oy 6’03_
divo = 8:L'+ 8y+ P =V v

is called the divergence of v. Note div v is a scalar quantity.

Divergence has an analogous definition in two dimensions. For

OF, n OF, .

F(z,y) = Fi(z,y)t + Fa(z,y)j] = divF = 5z T oy

22.1.1 Example: v = zy?i + zyzj + yz2k. Find div v

'E]@ qi = (Xcg > + 5 (X\é%> %%i (\éf%?>
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22.2 Understanding div in two dimensions.

Consider the flow of a two dimensional fluid with continuous velocity field v(z,y) =
v1(z,y)t+v2(z, y)j. Our aim is to calculate the outward flux from a small rectangle
in the plane of area AzAy as in the diagram below.
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We first approximate the flux across each of the four sides of the rectangle. In each
case the approximation will be v - nAS, where we assume v is constant over each

edge. Also let z* € [z,z + Az] and y* € [y, y + Ay] represent chosen points in each
interval.

Edge 1: we evaluate v at (z*,y) and assume it is constant across the entire edge.
An outwardly pointing unit normal vector is —j.

flux = w(zt,y) - (-7) Az
Edge 2: we evaluate v at (x + Az, y*) and assume it is constant across the entire
edge. An outwardly pointing unit normal vector is 1. ’

flux ~v(z+ Az,y*) - (1) Ay.
Edge 3: 'we evaluate v at (z*,y + Ay) and assume it is constant across the entire
edge. An outwardly pointing unit normal vector is j.

flux mv(z*,y+ Ay)-(J) Az.

Edge 4: we evaluate v at (z,y*) and assume it is constant across the entire edge.
An outwardly pointing unit normal vector is —. '

flux =~ v(z,y") - (1) Ay.
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Combining all four terms gives an approximation to the net outward flux:

net outward flux

~ (v(z+Az,y) —v(z,y") 1 Ay + (v(e®, ¥ + Ay) - v(e",y)) - Az
_ (v(m-i-Aat,y ) —v(z, ?J*)> iAzAy + (v(m*,y-}-Ay) —v(x*,y)) N

Az Ay
— <U1($+A93,’y*) _Ul(x,.y*) + v?(x*ay—'—Ay) “"UQ(Z*,Q)> AmAy
Az
Ouy 87)2) = -
LA GO JV (»{f *

= div(v)AzAy.

Hence, we have
flux out of a rectangle

~ div(v).
area of rectangle v(v)

If we take the limit as the dimensions of the rectangle appproach 0, we have

div (v) = Alj{fﬂo flux ozt :f AA]

»”

In other words, div(v) is the “outward flux density” of v at a given point.
This concept generalises quite naturally to three dimensions:

flux out of AV
AV '

In the context of fluids (our main focus so far) we can say div(v(z,y, z)) measures
the tendency of the fluid to “diverge” from the point (z,y, 2).
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div(v(z,9,2)) = lim_
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22.3 Outward flux across a closed curve in the plane (revis-
ited) |

One final calculation uses the divergence to calculate the net outward flux of v
across a closed curve. We have already seen that we can evaluate this quantity by

calculating ]{ v-n dsS.
c

Iﬂ?“—“—_——_/ - .
"Now let D be a region in the z-y plane bounded by a piecewise-smooth, simple

closed curve C, which is traversed with D always on the left. Let vi(z,vy), ve(z,v)
have continuous derivatives in D (again the conditions of Green’s theorem!). ‘
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By the previous calculation involving divergence, we can also approximate the out-
ward flux from the region by dividing D up into small rectangles and approximating
the net outward flux across each rectangle. We know that for one rectangle,

outward flux of one rectangle = div(v(z*,y"))AzAy,

where (z*,y*) is some point inside the rectangle. We repeat this for each rectangle
containing part of the region D, so that

net outward flux across C' & Z div(v(z*,y")) AzAy.
Taking the limit as Az, Ay — 0, we have ’ ’
net outward flux across C = JI div(v(z,y)) dA,
.

the double integral of the region D.

To obtain the flux, we integrate the flux density over the region. Compare this with

the context of mass density: to obtain the mass, we integrate the mass density over
the region.

Finally, the two ways of calculating the same quantity must obviously be equal:

fcv(w,y) n dS = Jj div(v(z,y)) dA. 7 |
D ) .
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22.4 Relationship to Green’s theorem

‘We have seen how to evaluate the 2D flux integral:

Fonas= [ - wwm e

n N y N
This can be rewritten as ot voE Uy E_ 17, d
. -
— . o
. — W =) -
_ Hyiv ndS cvl’dy Vo dT %: ) ot (Uﬁ(\)

kS

If we define Fi(z,y) = —uva(z,y) and Fa(z,y) = v1(x,y), we then have

P TR T

%v-nd5’=7{ﬂ dz + F5 dy.
c . c

We also have
Ou  Ouz _O0F OR
or  Qy Oz Oy’

Hdw(v ) dA = H <8F 2 @> dA.

This tells us that in terms of the new vector field

div(v) =

so that

F = —ut +vj = F1i + Fpj,

; i T
’/__,\"% B =’b \ -
the two ways of‘calculating ﬂux!are given by )@(\Jx O‘Q —~ 1 ‘AQ& i
jj <8F2 0 ?) dz dy = ?{(Flda:—kngy)

This is none other than Green’s-theorem' So the flux identity we obtained at the
bottom of the previous page is just Green s theorem in disguise. We shall call this
the fluz form of Green’s theorem.
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22.4.1 Use the flux form of Green’s the/or_e’r_ns to calculate the outward

flux of v = zyt + zyj across the curve from (2,0) to (-2,0) via the
semicircle of radius 2 centred at the origin (for y > 0) followed
by the straight line from (-2,0) to (2,0).
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22.4.2 For the following graphs of vector fields, determine whether the
divergence is positive, negative or zero.
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