23 Parametrisation of surfaces in R3

By the end of this section, you should be able to answer the following questions:

e What does it mean to parametrise a surface in R3?

¢ How do you parametrise certain surfaces?

23.1 Parametric surfaces

We have already seen two ways of representing a surface in R3: explicitly as

z = f(z,y) or implicitly as F(z,y,2) = 0.

Another way of representing a surface S in R® is by a parametrisation. This is where
the coordinate variables are functions of two parameters v and v:

z=z(u,v), y=yuv), z=zuv)
and the vector _
r(u,v) = z(u,v)i + y(u,v)j + z(u,v)k

traces out the surface as u,v vary over some region D in the “u-v plane”. So for
every point (u,v) in D, there corresponds a point on the surface S.

The following diagram shows the point P on the surface S which corresponds to the
point (u,v) in the region D in the w-v plane. As (u,v) moves around all points in
D, the point P moves around in S, tracing out the entire surface.

Note that a surface defined explicitly by z = f(z,y) is equivalent to a parametrisa-
tion - ‘ '

r(z,y) = zi +yj + f(z,9)k,
where we treat the coordinate variables z and y as the parameters. Note that we
have not specified any bounds on the variables. Often the challenge is to not only

find suitable functions for a parametrisation, but for a finite surface to determine
bounds on the parameters. '
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23.2 Parametrising surfaces using cylindrical and sphérical
coordinates

We can use our knowledge of cylindrical and spherical coordinates to parametrise
certain surfaces with which these coordinates are naturally associated.

Recall cylindrical coordinates:

x=rcosf, y=rsinf, z=z.

Setting exactly one of the cylindrical coordinates to a constant value necessarily
gives a parametric surface. ‘

Setting z = 2 with 0 < 0 < 2m, 0<r <3 descrlbes a disc of radlus 3, centred at
the 2z axis lying in the plane z = 2:

r(re)= Viesel +ThEy + o 3

.
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Setting r = 5 with 0 £ 6 < 27, 1 < z < 3 describes the surface of a cyhnder of

radius 5 and of height 2 between z = 1 and z = 3:
- < N A N
cle=) = Sesb * Ssmby 4 2t

Setting 0 = 7/2 with 2 < z < 4, 0 < r <1 describes a rectangle lying in the y-z

plane. Another description of the same surface would be z = 0, {(y, 2)|0<y <

L 2<s<4) Cre)s Testl —%“ij vk
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23.2.1 Parametrise the paraboloid z =1 — 2% — 32 for z > 0.
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Recall spherical coordinates: z = rcosfsing, y = rsinfsing, z=rcos <;5.'

Setting exactly one of the spherical coordinates to a constant value necessarily gives
a parametric surface.

Setting r = 2 with 0 < 8 < 27, 0 < ¢ < 7 describes the surface of a sphere of radius
2 centred at the origin: '

'\q:(@( ¢\ = 2 oSand 1 4 25‘“%5‘\”9{\5 + 2&33(7’[&- g

Setting ¢ = 7/3 with 0 < r < 2, 0 < 6 < 27 describes the open cone with angle 7/3
to the positive z-axis, the “mouth” of which lies on the sphere of radius 2 and with
vertex located at the origin: . w~ 7
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Setting § = 0 with 0 <7 <3, 0 £ ¢ < 7 describes the half disc of radius 3 lying in

the z-z plane: .
\(‘(((¢5> S

23.2.2 Parametrise the part of the sphere z? + y? 4+ 22 = 16 that lies
between the planes z = 2 and z = —2. ( veolivs (e)
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23.3 Tangent planes

Let S be a surface parametrised by
r(u,v) = z(u,v)t + y(u,v)j + z(u,v)k.

Here we find the tangent plane to S at a point P specified by r(a,b).

There are two important families of curves on S. One where u is a constant, the

other where v is a constant. The diagram below shows the relationship between
horizontal and vertical lines in D (in the u-v plane) and curves on S.

3

that (a, v) lies in D. A tangent vector to this curve at P is

(%(

Similarly setting v = b defines another curve on S parametrised by r(u, b). A tangent
vector to this curve at P is

. . . Oz . Oy . 0z /
%%3&‘} veck ;— = (a, b.ﬁ + %(% b)j + %(‘“ b)k. MG

— ector _ Oz, ... Oy . 0z
Xﬁ\ é)),.:} 2 Ty au(a, b)i + au(a, b)j + 8@5(&’ bk.

If r, and 7, are continuous and r, X 7, is never-0 inside D (wé make an exception )
for points on the boundary of D), we call the surface smooth (it has no “kinks”).  /

For a smooth surface, 7, x r, is a normal vector at any point inside D. This
vector evaluated at (u,v) = (a,b) is also normal to the tangent plane at the point
P = (z(a,b),y(a,b), z(a,b)).

The equation of the tangent.plane at P is given by




23.3.1 Find the tangent plane to the surface parametrised by r(u,v) =
u?i + 1?5 + (u + 2v)k at the point (1,1,3).
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=u+2v

uz,y=v2, P4

X




x=u2, y=v2,z=u+2v







