28 Gaussian elimination and linear equations
By the end of this section, you should be able to answer the following questions:

e How do you use Gaussian} elimination to find the row echelon form of a matrix?
e What are the three cases for solutions to systems of linear equations?

e How do you solve a system of linear equations?

e What are elementary matrices and how do they rela’pe to elementary row op-

erations?

" Say we have m linear equations in n variables:

a1121 + a12%s + - + G1nTn, = by

A21%1 + QT2 + + -+ + GonZn, = by
Om1%1 + QmaTo + -+ + QmnZn = bm.

We can write these equations in matrix form: Az = b.
A = [ay;] is the m x n coefficient matrix.

T ‘ b

T = : is the column vector of unknowns, and b = : is the column
T ’ B b

vector of the right hand side.

Note: a;;, b; eRorC.

28.1 Gaussian Elimination

To solve Az = b:
write augmented matriz: [Alb].

1. Find the left-most non-zero column, say column j.

2. Interchange top row with another row if necessary, so top element of column j is
non-zero. (The pivot.)

3. Subtract multiples of row 1 from all other rows so all entries in column j bglow
the top are then 0.
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4. Cover top row; repeat 1 above on rest of rows.
Continue until all rows are covered, or until only 00...0 rows remain.

The result is a triangular system, easily solved by back substitution: solve the last
equation first, then 2nd last equation and so on.

- 28.1.1 Example

Use Gaussian elimination to solve:

T3 — Ty = 2
=927 — 229 + 623 — 1224 = T
3z, + To— 223+ 4dzy =
' 213 =6
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28.1.2 Definition (row echelon form)

A matrix is in row echelon fofm (r.e.f.) if each row after the first starts with more
zeros than the previous row (or else rows at bottom of matrix are all zeros).

The Gauss algorithm converts any matrix to one in row echelon form. The 2 matrices
are equivalent, that is, they have the same solution set.

28.1.3 Elementary row operations

i
1. 7; < 74 : swap rows ¢ and j. \ (B @PS
2. r; — r; —cry : replace row § with Y ‘
(row 4 minus ¢ times row j). A _ b N
3. 1r;,—cry : , L__——— C

replace row ¢ with ¢ times row 4, where ¢ # 0.

The Gauss algorithm uses only 1 and 2.

28.2 Possible solutions for A:r =}

Consider the r.e.f. of [A|b]. Then we have three possibilities:

(1) Ezactly one solution; here the r.e.f. gives each variable a single value, so the
number of variables, n, equals the number of non-zero rows in the r.e.f.

(2) No solution; when one row of r.e.f. is (00 ... d) with d # 0. We can’t solve
0z1 + 0z2 + - -+ + 0z, = d if d # 0; it says 0 = d. In this case the system is said. to
be inconsistent.

(
(3) Infinitely many solutions; here the number of non-zero rows of the r.e.f. is less
than the number of variables.

Note that a homogeneous system has b =0, i.e., all zero RHS. Then we always have
at least the trivial solution, z; =0, 1 <1 < n.
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28.2.1 Examples

T1+2To— 23 =
2.’1:1—:122

4y + 29 — 223 = 1
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28.3 Elementary matrices

An n x n matrix is called elementary if it can be obtained from the n X n identity
matrix by performing one of the three elementary row operations. ‘

’ . < v o / ‘ 0 [ 4]

For example, for 3 x 3 matrices, (UL:"\J“H I - o\ 0

: oo
e A type 1 row operation is Ry <+ R which corresponds to the elementary
matrix '

100\
001
010

o A type 2 row operation is Ry — Ry —3R; which corresponds to the elementary

matrix
1

00
-3 10
001

e A type 3 row operation is Rz — 5Rs which corresponds to the elementary
matrix

O O =

0 0
10 }.
0 3%

In fact, applying an elementary row operation to any m X m matrix A is equivalent
to multiplying A from the left by the corresponding elementary matrix.

For example,

1 023 1 023 100 1 023
9 136 |21 440)=(001 9 -1 3 6
1 4 40 2 —1 3 6 010 1 440

and ’

1 023 1 0 2 3
9 -1 36 | RS 1 1 3 _3
1 440 1 4 4 0
100 1 023
=(—310 2 -1 3 6
00 1

1 440
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AN 1> 4

Elementary matrices are useful theoretical tools. Many proofs of fundamental results
in linear algebra rely on these matrices and their properties.

For example, we can view the steps in determining the inverse of a square matrix'as
a sequence of operations involving elementary matrices. We look for a solution X to
the matrix equation QX =17 sby forming the augmented matrixm and performing
elementary row operations. For example, after performing three operatlons we have

really changed the equation to ( A .(;7 OPS (T ‘ A~ t)

E3Ey B AX = EsEy By,

where F1, Ey, F3 are elementary matrices. On completion of the steps (say there are
n of them), we reach

E,. EzElAX—IX X=E,...EEI,

which tells us that the inverse of A (usua.lly denoted A1), if it exists, is nothing -
more than the product of elementary matrices E, ... ExE;.

In fact, if A= = E, ... E5F1, then the matrix A itself must be a product of inverses
of elementary matrices A = E7'Ey* ... E;. It turns out, as we shall see, that the
inverse of an elementary matrix is an elementary matrix. Hence if A is invertible,
then it can be written as a product of elementary matrices. .

M\

28.3.1 Two important results regarding determlnants ‘.\- S 5{ (N,&'D
luwug -

Two significant results regarding determinants are A ‘ f g gEe™ e

det(AB) = det(A) det(B), "det(A) = det(AT)
You should already be familiar with these results. They can be proved by the use
of elementary matrices, by first establishing the results where A is an elementary

matrix, and then generalising.

The proofs are beyond the scope of this course, but it is worth mentioning that the
proofs make use of elementary matrices, hence demonstrating their importance.
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28.3.2 Inverses of elementary matrices

It is a simple matter to verify that elementary matrices of type 1 (corresponding to
the row operation of swapping two rows) square to the identity. In other words, the
inverses of these matrices are just the matrices themselves. See, for example, that

'&r 100 100 100
‘ (7{‘Q/ ‘ 0 01 001 )=1010
010 010 001

Note that in section 30.1 we refer to these elementary matrices as permutation
matrices.

Let us consider elementary matrices of type 2. It is straightforward to give the
inverse of these matrices. Note the pattern for the following 3 x 3 matrices:

100\ " 1 00 100\ 1 00
a10)| =(=210}, [010] ={o0 10],
00 1 0 01 b 0 1 b0 1
] 7 100\ /1 00
1Pe 010 =0 1 0
0 c 1l 0 —c 1
Finally, the inverses of the type 3 elementary matrices are simply
a 00\ 1/a 0 0 100\ " 1 0 0
o010 =0 10}, {obo] =(o01m0],
00 1 0 01 00 1 0 0 1
N —1
_H Z 100 10 0
& 010} =01 0
0 0 ¢ 0 0 1/c

The significance here is that in general, the inverse of an elementary matrix is an
elementary matrix of the same type.
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FLWM' ¢ on VK
Say we need to perform Lthree elementary row operatlons o obtain ar.ef. of A. We

can then write

E3FoEi A = U,

where U is the r.e.f. of A. Since we know the inverses of all elementary matrices
(indeed, they do exist), we can write

A=ET'E7'ETU.

By observation, the matrix L = E; ' Ey ' Ey ' is lower triangular with 1's on the main
diagonal.

1 -1 4
For the matrix A= | 1 0 -2 |, the two operations which give the r.e.f. are
2 =2 10

Ry — Ry — Ry and R3 — R3 — 2Ry, so the r.ef of A can be expressed in terms of
elementary matrices

100 100
U= 010 -1 10 |A
-2 01 0 01

Since we can easily invert these elementary matrices, we have

100 100
A=|110 010 |U
001 201/
100
= A={({110|U
201
. ¢ 3
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