29 LU decompositions

By the end of this section, you should be able to answer the following questions:

e How do you find an LU decomposition of a matrix?

e How do you use an LU decomposition to solve a system of equations?

29.1 Finding L and U

Given an m X n matrix A, we use the Gauss algorithm to find the r.e.f. U (which is

~alsom x n) for A

Say !ﬁ? row inﬂefch‘ahges are used,) so there are only operations of the form r; —
Ty — crj. Let ¢;; be the multiple of the 1st row subtracted from the tth row, ¢y be
the multiple of the 2nd row subtracted from the (new) ith row, etc., when finding

U. i >
Form the m x m lower triangular matrix: QI K( - C}\S E \
o AN
1 0 0o ... 0
Co1 1 0 0
L = C31 C39 1 0
Cml Cm2 Cm3 ... 1

Our main result is that indeed A = LU. This is what we call an LU decomposition

. of A.

x

It is worth stressing that 4t is only possible to find an LU decomposition if no row
interchanges are used. :

2

We remark that not every matrix has an LU decorhposition. If, however, a matrix

does have an LU decomposition, then o
det A=det LdetU = det U.
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Find the LU decomposition for A where A = ( 4 5 0 ) , then calculate
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29.2 Using an LU decomposition to solve systems of equa-
tions A=1LU = l_(ux> =~ b

We can use this decomposition to solve[Aa’: = blby first setting y = Uz and then

solving Ly = b to obtain y, and then solving Uz = y to obtain the solution z.

Since L is lower triangular and U is inr.e.f, solving Ly = b (by forward substitution)
and Uz =y (by back substitution) are both straightforward.

The advantage of this method is that we only need to compute L and U once. Then

we can use them for many different b, even When perhaps b; depends upon earlier b .
This' method also works if A is singular. )ué/b;(\ go Ve

| - (,,
29.2.1 Example L i‘ér 4:@!' /
< 2 3 —1) | (1) @%[ve Ux = g;
Given A = 4 5 0 |,solvedz=| 2 |.
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