Eigenvalues and eigenvectors 31

By the end of this section, you should be able to answer the following questions:

- How do you find the eigenvalues and eigenvectors of a given square matrix?
- What are some simple properties of eigenvalues and eigenvectors?
- Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent.

A great deal of this section should be familiar to you. We start by recalling some Review MATHIOSI results on vector spaces associated with matrices.

31.1Column space, row space, rank, nullity

For any $m \times n$ real matrix A, the null space of A is the vector space

$$N(A) = \{ \boldsymbol{x} \in \mathbb{R}^n \mid A\boldsymbol{x} = \boldsymbol{0} \}.$$

The dimension of N(A) is called the *nullity* of A, denoted nullity(A).

The column space of an $m \times n$ matrix A is the space spanned by the column vectors of $A \subseteq \mathbb{R}^m$. The dimension of the column space of A is called the rank of A, denoted rank(A). This coincides with the number of non-zero rows in the r.e.f. of A.

The row space of an $m \times n$ matrix A is the space spanned by the row vectors of A $(\subseteq \mathbb{R}^n)$. A basis is given by the non-zero rows in the r.e.f. of A. The dimension of the row space is also given by the rank of A.

Note that the row space of $A^T = \text{column space of } A$.

For $m \times n$ matrices,

$$rank(A) + nullity(A) = n.$$

Defin
$$\{v_1, v_2, ..., v_n\}$$
 is linearly independent $\}$ If $q_1v_1+q_2v_2+...+q_nv_n=0$
then $q_1=q_2=...=q_n=0$

s.t. OEV

Atmen EN

31.2 Non-singular matrices

For $n \times n$ square matrix A, we have several conditions for the existence of A^{-1} .

For $n \times n$ matrix A, the following are equivalent:

AA" = A"A = I.

A is non-singular.

i.e.

2. Ax = 0 has only the trivial solution x = 0.

- 3. If U is a r.e.f. for A, then U has no row of all zeros.
- 4. Ax = b has a solution for every n-dimensional column vector \boldsymbol{b} .

5. $\det(A) \neq 0$.

- **6.** The columns of A are linearly independent.
- 7. The rows of A are linearly independent.
- 8. $\operatorname{nullity}(A) = 0$.
- **9.** rank(A) = n.

31.3Eigenvalues and eigenvectors

Let A be a square matrix. Then an eigenvector of A is a vector $\mathbf{v} \neq \mathbf{0}$ such that

$$A\mathbf{v} = \lambda \mathbf{v}$$

for some scalar λ .

The scalar λ is called the corresponding eigenvalue.

If v is an eigenvector of A, then so is tv for any scalar $t \neq 0$.

Recall if λ is an eigenvalue of A, with corresponding eigenvector v, then $Av = \lambda v =$ $\lambda I \mathbf{v}$, so $(A - \lambda I) \mathbf{v} = \mathbf{0}$. Hence $\mathbf{x} = \mathbf{v}$ is a non-trivial solution to the homogeneous system of equations $(A - \lambda I)x = 0$, and conversely, if there is a non-trivial solution then λ is an eigenvalue of A. Thus:

if and only if $det(A - \lambda I) = 0$.

 λ is an eigenvalue of $A \iff A \times = \lambda \times$ if and only if $(A - \lambda I)x = 0$ has a non-trivial solution if and only if $A - \lambda I$ is singular

For an $n \times n$ matrix A, $det(A - \lambda I)$ is a polynomial of degree n in λ , called the characteristic polynomial of A.

The equation $det(A - \lambda I) = 0$ is the *characteristic equation* of A.

Eigenvalues λ may be complex numbers, and the eigenvectors \boldsymbol{v} may have complex components, even for real matrices A.

To find the eigenvalues and eigenvectors, do the following:

- 1. Find the roots of the characteristic polynomial, $det(A \lambda I) = 0$. These are the eigenvalues.
- 2. For each eigenvalue λ , find all v satisfying $(A \lambda I)v = 0$. These are the eigenvectors. The vector space spanned by the eigenvectors corresponding to each eigenvalue is called the eigenspace associated to λ . I= (001)

31.3.1 Example

Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} -3 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$.

$$A+41) = 0$$

$$A+41) = 0$$

$$A+41) = 0$$

$$A+41) = 0$$

$$A+41 = 0$$

$$A+41$$

For n=2,3, we can solve the characteristic equation to get eigenvalues. For $n\geq 4$ there are better numerical methods.

31.4 Simple properties

For a square matrix A:

1. A and A^T have the same eigenvalues.

 $det(A^{T} - \lambda I) = det(A - \lambda I)$ $diagonal = det(A - \lambda I)$

2. A is singular if and only if $\lambda = 0$ is an eigenvalue of A.

logic from p198
A singular (=>) Ax=0 has nontrivial sel.
(=>) >=0 is an eigenvalue.

3. If λ is an eigenvalue of A, then λ^2 is an eigenvalue of A^2 , and $1/\lambda$ is an eigenvalue of A^{-1} when A is non-singular.

4. If λ is an eigenvalue of A, then $\lambda - m$ is an eigenvalue of A - mI, for any scalar m

INDUCTION
Stolemat St 1=1, 2, 3
Suppose the following hold:
1. S, is true
2. Vin 21, if Son is true then
Snot is took.
Then the statement "YKZI, Si" is true.
In proof (Show S, is true
2 Show that if So is true
Men Some must be true Yu 21
result.

to and the flower of any analysis and the second to the se

31.5 Eigenvectors corresponding to distinct eigenvalues are linearly independent

If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct eigenvalues of A, with corresponding eigenvectors v_1, v_2, \ldots, v_k (such that v_i corresponds to λ_i), then the set of eigenvectors $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.