4 Variation of parameters
‘By the end of this section, you should be able to answer the follovving questions:

e Under what conditions does the method work?
o What functions need to be determined first before using the method?

e How do you use the variation of parameters method to solve a nonhomogeneous
linear second order ODE? '

The method of undetermined coefficients is very easy to apply, but only works for
constant coefficients with certain r(z). In the case comors] SalRon
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has arbitrary coefficient functions p, g,r, the variation of parameters works all the

time. The process is the following: = A * ( 4 "éz)
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o Solve y" 4+ p(x)y’ + q(z)y = 0 to obtain a basis of solutions y1,y» and set
L/If=y1y§ — 1192 (this quantity is known as the Wronskian of the solutions y;
-and yp). There is a result that states that W # 0 if and only if y; and y, are

linearly independent. Yo A %\ + g\g 2

o Set yp = u(z)y1(x) + v(z)y2(z) and substitute into the ODE. We also impose
the condition wy; + v'ys = 0. We have the freedom to impose this extra
arbitrary condition because we have two functions (u and v) and only one
equation they need to satisfy arising from the ODE.

o We obtain ‘ _
u(z) = — ¥ iz, v(z)= [ % :v

This approach is a variant of the method of Reduction of Order, which prescribes
that we take a solution, say y; of the associated homogeneous equation and seek a

particular solution of the form y, = U(z)yl. - \/(1
or 4= V)b
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4.1 Derive the formulae for u(z) and v(z) in the variation of

parameters
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4.2 Example:

— 4y + by = 2e*/sinz
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43 Example: ¢’ + 4y = csc2z ;—k\:’z:
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4.4 Summary of ODE techniques and types of equations you

should know
First order, directly integrable
First order, separable ‘ AR SVAIRISCN
First order, linear, integrating factor |
First order existence and uniqueness criteria
First order, exact
Second order homogeneous, linear, constant coefficients (2 VISt A

Second order nonhomogeneous, constant coefficients, method of undetermined

_ coefficients for certain cases
—————

Reduction of order, i.e. for ¥ + p(z)y’ + ¢(z)y = 0, if we have y; find y, by
setting yo = u(z)y1. evision .

Second order nonhomogeneous, variation of parameters.
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