5 Forced oscillations - resonance, beats, practical resonance

By the end of this section, you should be able to answer the following questions:

- How to determine the steady state solution of a forced oscillator?
- What is resonance?
- How do beats arise?

Recall ODE for free oscillations with damping:

$$my'' + cy' + ky = 0.$$

Now if we have an external force r(t) acting on the body, the equation becomes

$$my'' + cy' + \underline{ky} = \underbrace{r(t)}.$$

r(t) is called the input or driving force.

Of particular interest are periodic inputs of the form

$$r(t) = F_0 \cos \omega t, \quad F_0 > 0, \ \omega > 0,$$

so that the ODE becomes

$$my'' + cy' + ky = F_0 \cos \omega t. \tag{6}$$

We have already seen how to determine y_H .

To determine y_P , by the method of undetermined coefficients, we set

$$y_P = a\cos\omega t + b\sin\omega t.$$

After substituting into (6), also setting $\omega_0 = \sqrt{k/m}$, we obtain

Note we need to modify our initial guess if $\underline{\omega} = \underline{\omega_0}$. $\underline{\mathcal{L}} \subset \underline{-} \subset$

We now look at the different cases when the system is damped (c > 0) or undamped

$$\begin{cases} (c=0). \end{cases} y_{+} = A \cos(c_{0}t) + B \sin(\omega t)$$

Undamped forced oscillations

In this case c=0. Assume $\omega^2 \neq \omega_0^2$. Then

$$y_P = \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos \omega t$$

UH= Acoswot + Bsmut $y^2 \neq \omega_0^2$. Then $y_P = \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos \omega t.$ $\int (0.5(0.\pm b)) = 0.59 \cos b + 5 \text{Masinb}$ (trig. id.)

We can therefore write the general solution as

$$y(t) = C\cos(\omega_0 t - \delta) + \frac{F_0}{m(\omega_0^2 - \omega^2)}\cos\omega t.$$

This represents a superposition of two harmonic oscillations. Their frequencies are the natural frequency $\omega_0/2\pi$ (cycles/sec) of the system and the frequency $\omega/2\pi$ of the input.

The maximum amplitude of y_P in this case is

$$a_0 = \frac{F_0}{k}\rho, \quad \rho = \frac{1}{1 - (\omega/\omega_0)^2},$$

where ρ is called the resonance factor. As $\omega \to \omega_0$, ρ and $a_0 \to \infty$. This phenomenon of excitation of large oscillations by matching input and natural frequencies ($\omega = \omega_0$) is known as resonance.

In the case of resonance the ODE can be written

$$y'' + \omega_0^2 y = \frac{F_0}{m} \cos \omega_0 t.$$

いっこい

The modified guess then gives

$$y_P = t(a\cos\omega_0 t + b\sin\omega_0 t).$$

Determining a and b by substitution into the ODE leads to

$$y_P = \frac{F_0}{2m\omega_0} t \sin \omega_0 t.$$

These oscillations grow as t increases.

When we are close to resonance, beats arise.

w close to wa

Take the solution

$$y(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} (\cos \omega t - \cos \omega_0 t)$$

corresponding to the initial conditions y(0) = 0, y'(0) = 0. This can be rewritten

$$y(t) = \frac{2F_0}{m(\omega_0^2 - \omega^2)} \sin\left(\frac{\omega_0 + \omega}{2}t\right) \sin\left(\frac{\omega_0 - \omega}{2}t\right)$$

Since we are close to resonance, $\omega_0 - \omega$ is small, so the period of the last sine term is large, giving rise to beats.

$$W_0 = 2tt, \quad W = TT, \quad F_0 = 10, \quad W_0 = 1$$

$$W_0 = \frac{2F_0}{m(w_0^2 - w^2)} \quad Sm\left(\frac{w_0 + w}{2}t\right) \quad Sm\left(\frac{w_0 - w}{2}t\right)$$

- 2F₀ sm (ω₀+ω₁) sm (ω₀-ω₁)
- (ω₀-ω₂) sm (ω₀+ω₁) sm (ω₀-ω₁) 8 6 2 -2 -6 bearls -8 -10 10 15 25 20 30

5.2 Damped forced oscillations

With damping, c > 0 and we know already that

$$y_H = e^{-\frac{c}{2m}t} (A\cos(\psi t) + B\sin(\psi t))$$

(remember underdamping gives damped oscillations).

 $y_H \to 0$ as $t \to \infty$, so the general solution in the forced case will approach y_P as $t \to \infty$. That is, the general solution $y(t) = y_H + y_P$ is a transient solution and approaches a steady-state solution which is given by y_P .

This is what happens in practice, because no physical system is completely undamped.

With damping, the amplitude is finite as ω becomes close to ω_0 , but may have a large maximum at some value of ω . In otherwords, some input may excite large destructive oscillations even with damping.

For the steady state solution, we have already seen that

$$y_P = a \cos \omega t + b \sin \omega t$$

= $C^* \cos(\omega t - \eta)$

with a and b given by (7) and (8) respectively.

The amplitude C^* of y_P is given by

$$C^* = \sqrt{a^2 + b^2} = \frac{F_0}{\sqrt{m^2(\omega_0^2 - \omega^2)^2 + \omega^2 c^2}}$$

Treating the amplitude as a function of ω , $C^*(\omega)$ will have a maximum when

$$\frac{dC^*}{d\omega} = 0, \qquad \text{(check this)}$$

that is, when $c^2 - 2m^2(\omega_0^2 - \omega^2) = 0$, or when

$$\frac{\omega^{2} = \omega_{0}^{2} - \frac{c^{2}}{2m^{2}}}{\omega^{2} = \omega_{0}^{2} - \frac{c^{2}}{2m^{2}}} = \frac{2\omega_{0}^{2} - c^{2}}{2m^{2}} \tag{9}$$

For sufficiently large damping, $c^2 > 2m^2\omega_0^2$, (9) has no real solutions, and C^* decreases in a monotone way as ω increases.

If $c^2 \leq 2mk$, (9) has one real solution (remember $\omega > 0$)

$$\omega = \omega_{\text{max}} = \sqrt{\omega_0^2 - \frac{c^2}{2m^2}}$$

and

$$C_{\text{max}}^* = C^*(\omega_{\text{max}}) = \frac{2mF_0}{c\sqrt{4m^2\omega_0^2 - c^2}}.$$

This is what we call practical resonance.

The ratio C^*/F_0 is called the amplification, which $\to \infty$ as $c \to 0$ in agreement with the case of resonance.

Example O.D.E.:

$$y(0) = 0, y'(0) = 0$$

$$y'' + y' + y = 10\cos(\omega t)$$

$$\Leftrightarrow m = 1, c = 1, k = 1, F_0 = 10.$$

$$\omega_{\text{max}} = \frac{1}{\sqrt{2}}$$

$$C_{\text{max}}^* = \frac{20}{\sqrt{3}} \approx 11.547.$$

$$y(t) = \frac{5e^{-\frac{1}{2}t}(1+\omega^2)}{(1-\omega^2)^2 + \omega^2} \left(\frac{2(1-\omega^2)}{1+\omega^2}\cos\left(\frac{\sqrt{3}}{2}t\right) + \sin\left(\frac{\sqrt{3}}{2}t\right)\right) + \frac{10}{(1-\omega^2)^2 + \omega^2} \left((1-\omega^2)\cos(\omega t) + \omega\sin(\omega t)\right)$$