7 Introduction to double integrals, volume below a surface

By the end of this section, you should be able to answer the following questions:

- What is the definition of volume below a surface?
- z=f(x,y) >0
- What is the definition of a double integral?
- How are the two related?

· iterated integrals.

Recall that if y = f(x), the area under the curve over the interval I = [a, b] is $\sqrt{\int f(x) dx} = \lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) dx$

7.1 Double integrals

Suppose we have a surface z = f(x, y) above a planar region R in the x-y plane.

Figure 10: What is the volume V under the surface?

Before moving onto general regions, we start by considering the case where R is a rectangle. That is,

$$R = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ c \le y \le d\}.$$

Start by dividing R into subrectangles by dividing the interval [a, b] into m subintervals $[x_{i-1}, x_i]$, each of width $\Delta x = \frac{b-a}{m}$ and [c, d] into n subintervals $[y_{j-1}, y_j]$ of equal width $\Delta y = \frac{d-c}{n}$.

Combining these gives a rectangular grid R_{ij} with subrectangles each of area $\Delta A = \Delta x \Delta y$.

In each subrectangle take any point P_{ij} with co-ordinates (x_{ij}^*, y_{ij}^*) .

The volume of the box with base the rectangle ΔA and height the value of the function f(x,y) at the point P_{ij} (so the box touches the surface at a point directly above P_{ij} - see figure 11) is

) is
$$V_{ij} = f(x_{ij}^*, y_{ij}^*) \triangle A.$$
 where A is a least area.

Then for all the subrectangles we have an approximation to the required volume V:

$$V \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A,$$

the double Riemann sum.

Figure 11: The rectangular box whose volume is $z^*\Delta A$.

Let $\Delta x \to 0$ and $\Delta y \to 0$, ie $m \to \infty$ and $n \to \infty$, then we define the volume to be

$$V = \lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A,$$
we write this as

if the limits exist and we write this as

$$\frac{\int \iint_R f(x,y)dA.}{\int \int_R f(x,y)dA.}$$

We call f integrable if the limits exist. Note that every continuous function is integrable.

7.2 Properties of the double integral

(i)
$$\iint\limits_R (f\pm g)dA = \iint\limits_R fdA \pm \iint\limits_R gdA$$

(ii)
$$\iint\limits_{R}cfdA=c\iint\limits_{R}fdA$$

(iii)
$$\iint_{R} f dA = \iint_{R_1} f dA + \iint_{R_2} f dA$$

(iv) If $f(x,y) \ge g(x,y)$ for all $(x,y) \in R$ then

$$\iint\limits_R f dA \geq \iint\limits_R g dA$$

7.3 Iterated integrals

We define $\int_{c}^{d} f(x,y)dy$ to mean that x is fixed and f(x,y) is integrated with respect to y from y = c to y = d. So

$$\int A(x) = \int_{c}^{d} f(x, y) dy$$

is a function of x only.

If we now integrate A(x) with respect to x from x = a to x = b we have

$$\int_{a}^{b} A(x)dx = \int_{a}^{b} \left[\int_{c}^{d} f(x,y)dy \right] dx$$
$$= \int_{a}^{b} \left(\int_{c}^{d} f(x,y)dy \right) dx$$

This is called an iterated integral.

7.3.1 Example: evaluate $\int_0^2 \int_1^3 x^2 y \ dy \ dx$

$$= \int_{0}^{2} \left(\int_{1}^{3} x^{2} y \, dy \right) dx$$

$$= \int_{0}^{2} \left(\frac{1}{2} x^{2} y^{2} \right) dy$$

$$= \int_{0}^{2} \left(\frac{9}{2} x^{2} - \frac{1}{2} x^{2} \right) dx$$

$$= \int_{0}^{2} \left(\frac{9}{2} x^{2} - \frac{1}{2} x^{2} \right) dx$$

$$= \int_{0}^{2} \left(\frac{9}{2} x^{2} - \frac{1}{2} x^{2} \right) dx$$

$$= \int_{0}^{2} \left(\frac{9}{2} x^{2} - \frac{1}{2} x^{2} \right) dx$$

Now try integrating the other way around:

7.3.2 Example: evaluate $\int_1^3 \int_0^2 x^2 y \ dx \ dy$

$$= \int_{-3}^{3} \left(\int_{3}^{2} x^{2} y \, dx \right) dy$$

$$= \int_{-3}^{3} \left(\frac{1}{3} x^{3} y \right)_{x=0}^{22} dy$$

$$= \int_{-3}$$

Figure 12: We have just calculated the volume of the solid outlined above.