8 Fubini’s theorem, volume by slabs

By the end of this section, you should be able to answer the following questions:

e What is Fubini’s theoreni?
o How is the double integral related to the iterated integral?

e How do you estimate the volume below a surface using slabs?

8.1 Fubini’s theorem

If f(z,y) is integrable on the rectangle
R={(z,y)la<z<b c<y<d},

then

Jj f(lay)dA = /b( df(l,y) d@} dx
R
= /( f(z,y) d%dy
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8.2 Example: evaluate jj(m” +9%)dA where “ '
. R '
R={(z,y)l0<z<2 0<y<1}
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Figure 13: A representation of the volume in example 8.2.
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8.3 Interpreting Fubini’s theorem in terms of volume

Fubini’s theorem is the key result that tells us how to evaluate a double integral.
We can see the relation between the iterated integral and the double integral by
considering an alternative way of calculating the volume below a surface.

Suppose we want to find the volume below the surace\z = nySabove the square
region 0 <z <8and 0 <y < 4. _ :

A natural way to solve this problem is to break the region up into slabs of equal
depth Ay = y;11 — y; located at y;, and add up the volume of the slabs

VzZAV,
J

where AV the volume of the jth slab Flgure 14 below shows two ways of doing this
using four slabs in each case. The t:@ia-dlagram follows the method outlined here,
taking slabs of thickness Ay. o f'(ot ce.
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" Figure 14: Two ways of approximating the volume under z = 22y using four slabs.

If the slab is very thin (i.e. Ay < 1) then the volume of each slab is

AV = Area of slab x Depth = C(yj)E

Cross- sechiomal @red)
Here C(y;) is the area of the slab at the location y; (and the result will depend on

y;!). From one-dimensional calculus we know exactly that

fa

8 N
Cly;) = /0 f(z,y;)dz  y; constant.
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It is easy to compu_te'this' as a regular integral since y; does not vary with z. Putting
all this together
V=~ Z AV; ~ Z Cly;)Ay
J J

As the slabs become thinner and thinner (Ay - 0) the approximation becomes
more accurate and we can replace the summation by an integral®

- /0 Oy = /0 4 ( /0 Sf(x,wdx) dy

Note that the y is held constant in the inner integral.

A similar argument can be applied by considering slabs of depth Az, located at z;.
In other words, take slabs that are parallel to the y-z plane.

P Q90 slewet.
8.4 Example: find the volume of the solid bounded by the
elliptic paraboloid z? +2y% + 2z = 16, the planes z = 2 and
y = 2, and the three coordinate planes." X =0, ‘690!!%:0 )
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'Recall that is in fact the definition of an integral
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Figure 15: The volume of the solid of example 8.4 is below the surface z = 16 —

z? — 292 and above the z-y plane as shown.
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8.5 Special case when f(z,y) = g(z)h(y).

s — ]

In this case we can separate the integral as follows.

\rfc’{mw:ki_ . Flz,y)dA = 2)h(y) dz d
Qqe\i\'o'(i a(: jR oY // " y

“ﬂ‘febc»:t:: . | =. / g@)% h(y)dg)

8.5.1 Example: jj'sina:cosy dA where R = [0, ] x [0, 5]
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Figure 16: The volume calculated in example 8.5.1 is outlined above.



