-37 Complex matrices
_ By the end of this section, you should be able to answer the following questions:

e What are unitary, Hermitian and normal matrices?

e Civen a complex matrix, determine if it can be unitarily diagonalised, and if
so, diagonalise it. '

Unitary and Hermitian matrices are complex analogues of orthogonal (A~! = AT)
and symmetric (A = AT) real matrices respectively.

In order to define these matrices, we need the following.

~ gt
37.1 Definition (conjugate transpose) ' /7A
N , . v
Let A be a complex matrix. The conjugate transpose of A, denoted A*, is given

by (A)T, where A is the matrix whose entries are complex conjugates of the corre- '
sponding entries of A. Z <o sk

Note that if A4 is real, A* = AT. ’ z*:_ a ~ iio .

37.1.1 Example
% 4—1
‘ ~Lo 4R

‘ ' — A\ 2,_’7—\: ""Z.(V
= A=(A) = [ o ua

Let A= ( 3+7 0 > . Write down the conjugate transpose of A.
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37.2 TUnitary matrices

A complex matrix A is said to be umta',ry if A=! = A*. Compare this definition with
1A Ta S
that of\real orthogonal m_aioil/’ces_J s = A T ‘
Recall that a real matrix is orthogonal if and only if its columns form an orthonormal
set of vectors. For complex matrices, this property characterises unitary matrices.
In this case however, we must use the complex inner product.
[ b

'37.3 Complex inner product

Recall that in R™ the inner (or dot) product of two vectors

Ul‘ U1

Uz (%
u = 3 v =
u’ﬂ 'Un
is given by _ T

Uv = Uy Uy Ut S 'Q L.&_
and the length (a real number!) of u by '

P ]

lul = Vu-u= \/u%+u§++u%
These definitions are unsuitable for vectors in C™.

To demonstrate, consider the vector u = (4,1) in C2. Using the above expression

for length, we would obtain |u| = v/ + 1 = 0, so u would be a non-zero vector
with length 0.

Instead we introduce the complex inner product

T evm T ) CCCNW.

where as usual 7; denotes the complex conjugate of v;. In matrix notation, we can
write this aslu - v = v*u) Note the length of a complex vector is always a real

number. ) / =

So now we understand what is meant by the following statement: Columns of a
unitary matrix form an orthonormal set with respect to the complex inner product.

e LQVSM,\ \g\ = [i&qﬁ (Cewp(}{{\( Mvies {p”@(‘/‘i“\)
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37.4 Hermitian (self-adjoint) matrices

A complex matrix A is called Hermitian (or self-adjoint) if A = A*.

As with symmetric matrices, we can recognise a Hermitian matrix by inspection.

See if you can see the pattern in the following 2 x 2, 3 x 3 and 4 x 4 Hermitian
matrices.

o, . S ain \aw :—E‘iblzl a1z + b3
11 G2 12 . :
< > , | e =il o ags +1ba3 |,

a1 — ibio a2 — b
@13 — 1013 @23 — 1023 a33

a1 aig +tbig @13 +ibis a1a + ibis
a1z — ibio ano Qo3 + Gbos g4 + thoy
a13 —ib1z Qo3 — ibas a33 a3 + by
a1 —tb1s Gos —ibas  aga — ibss G4

where. a5, b;; € R. Note in particular that the diagonal entries are real numbers.

One of the most significant results on Hermitian matrices is that their eigenvalues
are real.

N@{ve} alk *caxsl S‘jmwﬁ_\n\c s Mices 2 Uesm7Ran .

37.4.1 Proof that Hermitian matrices have real eigenvalues

Let v € C" be an eigenvector of the Hermitian matrix A, with Acorrespondir'lg eigen-
value A. In other words,

Av = \v. < (13)

In what follows, we use the fact that (AB)* = B*A* which holds since the same is
true for matrix transposition. : '

We multiply (13) from the left by v* (treat v as an n x 1 complex matrix) to obtain
v* Av = v*(Mv) = A\(v*). : (14)
Also note that ,
(v*Av)* = v* AT (v*)" = v Av.

In other words, v*Av is also Hermitian. Since it evaluates to be a 1x1 matrix, and

all Hermitian matrices have real numbers on their diagonal, this means that v*Av
is a real number.

‘The quantity v*v is precisely the complex inner product of v with itself as we have
already seen, which is also a real number.
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Therefore equation (14) is of the form .
z=MXy, ,y€ER,
from which we must conclude that A is real.

One consequence of this result, is that a real symmetric matrix has real eigenvalues,
since every real symetric matrix is Hermitian. This result was stated on page 212
but not proved. -

37.5 Unitary diagonalisation
‘We have seen that real symmetric matrices are orthogoﬁally diagonalisable. There
is an analagous concept for complex matrices

A square matrix A with complex entries is sa,ld to be unitarily diagonalisable if there -
is a unitary matrix P such that M}s diagonal. ; AP @D .

It is natural to consider which matrices are unitarily diagonalisable. The answer lies
in a more general class of matrix.

37.6 Normal matrices

A square complex matrix is called normal if it commutes with its own conjugate
transpose, ie, 1ﬂAA* = A*A.
._.___._———--—-J

Normal matrices are generally more difficult to identify by inspection. However, we
have some classes of matrices which are normal:

unitary, /Ay AZ\( = AKA
Hermitian, /lV - A,“‘: = /‘Y M A A

real skew-symmetric (satisfying AT = —A),

e any diagonal matrix,

e others?

We make a note that real normal 2 x 2 matrices are either symmetric or of the form

< —a b 2 > (which include the skew-symmetric examples).

A class of matrix which is not generally normal is the class of complex symmetric
matrices.
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37.6.1 Example

’ ClassifyI the matrix A = < L , 1—|—'z >
144 —1

/\x _ <\ i:i) # A (et “efuikg\

(L)

(“*) v\c{& VV\\BY““?)
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37.7 Normal = uhitarily diagonalisable

The main result we have is completely analagous to the real case of orthogonal
diagonalisation and symmetric matrices on page 212. We will not prove this result.

An n x n complex matrix is unitarily diagonalisable if and only if it normal.

37.7.1 Example

If possible, diagonalise the matrix ( 0 _6 o; 2 _Zm ) = A .

Ae’? - b Z*Zé> ':A =) /AV Iy \’{é'fu-.:'\‘:\k.
‘ - & o
= A S vm-fw\\_{ =) A ¢ ol %*" (7

O&'\msquﬂ e b le . | |
Tk ooy \ < U ~oNN —Q

‘L:,LZ T - }?—-lo\ 5 [6
| =(a-8 (3-2)
— =8 %

A_/%X < A 1-’\"zc\ b\ (?\
- 4
fow . =S hZG« A (Zf’lc)Q e
= o= ((H)b.
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):‘Z o Vo, = \;/
—_— - k¢
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