DEPARTMENT OF MATHEMATICS

MATH2000
Curl and Stokes’ theorem (solutions)
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Y223 gld aSy7
= i(72%° — 52%2%) — §(62°y" — 3y?2?) + k(42°2° — 2y2*).
(2) The velocity obtained previously was v = Y 7 — T j

2r(z? +y?)  2m(x?+y?)
To show irrotation:
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The fluid is irrotional point-wise (i.e. at each point) rather than as a whole. If you place
a tiny paddle wheel in the fluid at any point it would not spin.
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F=VxA
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Since P99, 2) _9 9.y, 2) etc for well behaved functions g (prove it!)

0z0x 0x0z

(4) A vector field v is said to be irrotational if curl v = 0. Suppose v is a conservative vector
field. For some function f(z,vy, 2),

of, of., Of
8x1+ Gy‘] + azk'
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Hence
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which, assuming all the second derivatives are continuous, equals 0. Hence v is irrota-

tional.

(5) Sketch the region!

The boundary curve of the surface is found by taking 22 + y? = 4 on the sphere surface
so 4+ 2?2 = 8 or z = £2. Since z > 0 we have z = 2, so the curve is the circle 2? + y? = 4

with z = 2. The vector equation of the curve is
r(t) = 2costi+ 2sintj + 2k

r'(t) = —2sinti + 2 costj + Ok.

By Stokes’ Theorem ﬂ(v xF)-ndS= %F(r(t)) -1’ (t)dt
s

2m
= / (2cost x 2i + 2sint x 2j + 2cos” tsin” tk) - (—2sinti + 2 costj + 0k)dt
0
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2
= / —8costsint + 8costsintdt = 0.
0
(6) By Stokes’ Theorem, %F(r(t)) ' (t)dt = Hv x F-n dS. Since z = 2 we have
S

curlF = V x ((zz 4 y)i+ (22° + 2y)j + (zy2)k.)

i J k
_ 9 9 9
- 0 oy 0z

rz+ Yy x5+ Y TYz
= (xz—?)ng—y)i—(yz—x)j+(z3—1)k
= (—10z —y)i— (2y — 2)j + (7) k when restricting to z = 2.

Note that there are many surfaces with C' as the boundary, it is clear that the surface
defined by the flat disc with r = 2 is the simplest. The appropriately directed unit normal
to the disc is k (by the right hand rule) so the RHS becomes

[J(0i=0i+@w) kds = [[7d5 =7 [[ dS = 7r2> = 287

since the region S is a disc of radius 2, and [[ dS =Area.
(7) The work done by F' around C' is

jécF-dr:iIcurlF-ndS,

where m is the unit normal vector such that the orientation of C'is positive, by Stokes’
theorem.

c
y
In this case,

) 3 k

curlFF = a% a% %

4z =2y 2y.
i(2) —3(—4) + k(0)

= 21+4j.
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Take the surface S to be in the plane z = z + 1 bounded by C: 22 + 3% = 1. In other
words,
r(z,y) =zt +yj+ (r+ 1)k

traces out the surface as z and y vary, provided 2% + y? < 1. This surface is represented
more simply by cylindrical coordinates. Setting z = rcosf, y = rsinf, we have the
parametrisation

r(r,0) =rcosfi+ rsinfj + (rcosf + 1)k

over the region

D={(r0)|0<r<10<86<2r}.

Hence,

jj curlF' - n dS = fj curlF' - (r, x ry) dr df
S D

provided n and 7, X 7y have the same direction.

The tangent vectors are

r, = cosfi+sinfj + cosbk

Ty = —rsinfe+ rcosfjy — rsinfbk.
Hence
) J k
T, X Ty = cos sin 6 cos 0

—rsinf rcosf —rsind
= i(—rsin?0 —rcos?#) — 5(0) + k(r cos® § 4 rsin? 0)
= —ri+rk,

and the direction is okay (remember the “right hand rule”).

z

—i+k

c

We have
= cwrlF' - (r, X 1y) = (26 + 45) - (—ri+rk) = —2r.



The work done is then

1 2T
= / / —2r df dr (Stokes’ theorem)
o Jo

()

= 27 [7"2}(1] = —27.

(8)

Uv=uze Yi+x2)+ 2e'k

curld = | 2 a% 2l =(ze —x)i— (0—0)j + (z + ze")k

re YV xz zeY

curld = (ze¥ — )i + (z + ze¥)k

(b) At (1,0,0), curld = —i + k and (curl?) - 7 = —1. Viewing from the origin, since the 7
component of curl? is negative, the wheel rotates anticlockwise. At (0, 1,0), curlt’ = 0 and
(curl?) - j = 0, so the wheel does not rotate. At (0,0, 1), curld =i+ k and (curld) -k = 1.
Viewing from the origin, since the k component of curlv' is positive, the wheel rotates

clockwise.
At (0,0,1) curl(v) =i+ k

A

At (0,1,0) curl(v) =0

At (1,0,0) curl(v) =-i + k



(9) (a)

— 1 — — -
F= (—gxf* — 312%)i + 2Py + 2°k

=22 —-324+224+32°=0

5 A _=(0f ~( 4  Of (1 5 0f
G—Go—l—Vf(a:,y,z)—z(ax)+](xz +ay>—|—k< 3xy+az
i j k
curlG = a% 3% %
o a:z3+g—§ —L1ady 4+ oL
o 13 ., O°f O’ f 2 9 0*f o*f
”( 5L T e T ayor ) I\ T Y T ar0:  zon

(OO
3 J—
A (2 * 0xdy ﬁyﬁx)

1 — — —
= (—gxg —3xt)i+ Py + Pk =F

jfﬁ-ﬁdS:ff(curl@)-ﬁdS:]{é-dF
S S
fé-df:féo-dﬂj{w-df
C C C
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From the fundumental theorem of line integrals

fo-df—Ogiving f@-dﬁ—%éo-dvf
C C C

The curve C' is a circle in the plane z=1, radius 1, centre on the z axis. Choosing a
parameterization 7(t) = cos(t)i — sin(t)j + k with 0 <t < 27 (note the direction of C).

Go(7(t)) = cos(t)] + %cosg(t) sin(t)k

drit) . = -
pr sin(t)i — cos(t)j]
Go(F(t)) dz(tt) = —cos®(t) = —% —5 cos(2t)

NOTE :
Evaluating the flux integral jf F - itdS could be difficult. You would need a parameteri-
S

sation
_rcos(f)-  rsin(@)- o -

77(7’,9)— \/5 1+ \/5 j+ﬁ

with 0 <7 < /2, 0 < 6 < 27 for the surface of the cone, then use

1 .1 L1 -
Ty X Tp = 3" cos(0)i + 3" sin(6)j — §rk.
Then we have
= Lo 54 2 0052(9) 5.4 2 ) 5 4
F(r(r,0)) - (rp x 1) = —a’r" cos™(0) T+3 + a’r® cos”(0) sin“(0) — a’r
where o = QL% You would then verify that
V2 2m 2 0
/ / (—a5r4 cos?(6) <COSS( ) + 3> + a’r* cos?() sin?(0) — a5r4> do dr = —m.
o Jo



