MATH2000Double Integrals in Rectangular Coordinates (x-y coordinates)

(1) Evaluate the following integrals

(a)
$$\int_{0}^{2} \int_{0}^{1} (x+y) dx dy$$

(b) $\int_{0}^{1} \int_{0}^{2} (x^{4}y^{5}+y) dx dy$
(c) $\int_{0}^{1} \int_{0}^{2x} 2y^{2} dy dx$
(d) $\int_{0}^{1} \int_{y}^{\sqrt{y}} 2x dx dy$

- (2) Find the volume of the solid bounded by the planes x y z = 0, y = 0, z = 0 and x = 4. Note that this problem is equivalent to finding the volume below the surface z = f(x, y) = x y and above the region in the x-y plane bounded by the lines y = 0, y = x and x = 4.
- (3) Calculate $\iint_D x \, dA$ where D is the region in the x-y plane bounded by y = 2 x and $y = x^2$.
- (4) Evaluate the integral $\int_0^1 \int_y^1 \cos(x^2) \, dx \, dy$.
- (5) Find the volume under the surface $z = e^{-x^2}$ and above the triangle in the x-y plane with vertices (0,0), (2,0) and (2,2).
- (6) Find the net volume under the surface z = x + y and above the region in the x-y plane lying between the two parabolas $y = x^2$ and $y = 2 x^2$. In other words, calculate

$$\iint_D (x+y) \ dA,$$

where D is the specified region in the x-y plane.

(7) By changing the order of integration find an equivalent expression for $\int_0^1 \left(\int_x^1 f(x, y) dy \right) dx$. (8) By changing the order of integration find an equivalent expression for $\int_0^1 \left(\int_{1-x}^1 f(x, y) dy \right) dx$.

The region D in the x-y plane is bounded by five curves as labelled in the diagram above. These curves are as follows:

a:
$$y = -x^2 + 2$$

b: $y = -x + 2$
c: $x = 3y + 2$
d: $x = -y^2$
e: $y = x + 2$.

Express D as a union of regions of type I or type II and show how you would evaluate the double integral

$$\iint_D f(x,y) dA$$

in terms of iterated integrals.