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(2) The region in the x-y plane can be expressed as a type I region:

D = {(x, y)|0 ≤ x ≤ 4, 0 ≤ y ≤ x}

⇒ Volume =
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Note: It’s a pyramid. Volume = 1
3
bh. The base is a triangle of area 8, the height is 4,

which gives the same answer.

(3) To start with, it is useful to draw a diagram. The following was done in MATLAB:
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It is straightforward to determine that the two curves intersect when

x2 = 2− x ⇒ x = −2, 1.

The region in the x-y plane bounded by these two curves is represented more easily as a
type I region (ie. bounded by two constant x values):

D =
{
(x, y) | − 2 ≤ x ≤ 1, x2 ≤ y ≤ 2− x

}
.

From this we can read off the bounds of integration and determine the double integral as
the following iterated integral:
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=
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=
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.

Note: a common mistake is to get a sign wrong in expanding the second last line above.

Also, a common problem students have is interpreting the negative answer. Remember,
the double integral really gives the “net volume” above the x-y plane. In this case, since
the function we are integrating (f(x, y) = x) defines a surface which lies below the x-y
plane for negative values of x, we can interpret the negative answer to mean that there
is more volume of the solid below the x-y plane than there is above.

(4) Since we cannot integrate cos(x2) with respect to x, we can try changing the order of
integration. The region of integration in the x-y plane is given by

D = {(x, y) | 0 ≤ y ≤ 1, y ≤ x ≤ 1} .

To clearly see how to change the order of integration, it may be useful to draw a diagram.
The following was done in MATLAB:
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From the diagram above, it should be clear that we can also represent the region of
integration as

D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x} .

We then have
∫ 1

0

∫ 1

y
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=
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=
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=
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(5)

z = f(x, y) = e−x2

Region of integration:
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This is either a type I or II region, but since e−x2
isn’t integrable with respect to x, choose

type I.
D = {(x, y)|0 ≤ x ≤ 2, 0 ≤ y ≤ x}

⇒ Vol. =

∫ 2
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=
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Set u = x2 ⇒ du = 2x dx
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(6) The region:
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Choosing type I:
D = {(x, y)| − 1 ≤ x ≤ 1, x2 ≤ y ≤ 2− x2}
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Vol. =

∫ 1
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=
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=
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=
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=
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Strictly speaking, this is the net volume, since z < 0 for x + y < 0.

(7) ∫ 1

0

∫ 1

x

f(x, y) dy dx

⇒ D = {(x, y)|0 ≤ x ≤ 1, x ≤ y ≤ 1}
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This can be rewritten as:

D = {(x, y)|0 ≤ y ≤ 1, 0 ≤ x ≤ y}

⇒ ans. is

∫ 1

0

∫ y

0

f(x, y) dx dy
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(8) ∫ 1

0

∫ 1

1−x

f(x, y) dy dx

⇒ D = {(x, y)|0 ≤ x ≤ 1, 1− x ≤ y ≤ 1}
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As type II: D = {(x, y)|0 ≤ y ≤ 1, 1− y ≤ x ≤ 1} ⇒ ans. is
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(9)
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D1 = {(x, y)|1 ≤ y ≤ 2, y − 2 ≤ x ≤
√

2− y}
D2 = {(x, y)|0 ≤ y ≤ 1,−y2 ≤ x ≤ 2− y}

D3 = {(x, y)| − 1 ≤ y ≤ 0,−y2 ≤ x ≤ 3y + 2}
∫∫

D

f(x, y)dA =

∫∫
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∫∫
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∫ √
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∫ 0
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f(x, y)dxdy
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