DEPARTMENT OF MATHEMATICS

MATH2000
Double Integrals in Rectangular Coordinates solutions.
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(2) The region in the x-y plane can be expressed as a type I region:

D={(z,y)0<z<4,0<y<x}
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Note: It’s a pyramid. Volume = %bh. The base is a triangle of area 8, the height is 4,
which gives the same answer.

(3) To start with, it is useful to draw a diagram. The following was done in MATLAB:
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(4)

It is straightforward to determine that the two curves intersect when
P?=2—z = z=-21

The region in the x-y plane bounded by these two curves is represented more easily as a
type I region (ie. bounded by two constant x values):

D:{(x,y)] —2<zx<l1, x2§y§2—x}.

From this we can read off the bounds of integration and determine the double integral as
the following iterated integral:
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Note: a common mistake is to get a sign wrong in expanding the second last line above.

Also, a common problem students have is interpreting the negative answer. Remember,
the double integral really gives the “net volume” above the x-y plane. In this case, since
the function we are integrating (f(x,y) = x) defines a surface which lies below the z-y
plane for negative values of z, we can interpret the negative answer to mean that there
is more volume of the solid below the z-y plane than there is above.

Since we cannot integrate cos(z?) with respect to x, we can try changing the order of
integration. The region of integration in the x-y plane is given by

D={(z,y) |0<y<1 y<z<1}.

To clearly see how to change the order of integration, it may be useful to draw a diagram.
The following was done in MATLAB:
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From the diagram above, it should be clear that we can also represent the region of
integration as
D={(z,y) |0<z<1 0<y<uz}.
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We then have

(5)

Region of integration:
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This is either a type I or II region, but since e*” isn’t integrable with respect to z, choose

type L
D={(z,y0 <z <20<y <z}
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(6) The region:

y=2-X
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Choosing type I:
D={(z,y)| 1<z <12’ <y<2-2a7}
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Strictly speaking, this is the net volume, since z < 0 for x +y < 0.
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This can be rewritten as:

D={(z,y)0<y<1,0<z<y}
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Di={(z,y)1<y<2,y—2<ax<2-y}
Dy={(z,9)0<y <1, -y’ <z <2-y}
Dy ={(z,y)] =1 <y <0,—y* <x <3y+2}
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