
DEPARTMENT OF MATHEMATICS

MATH2000
Divergence, parametrising surfaces and surface integrals (solutions).

(1) F(x, y, z) = F1i + F2j + F3k where

F1 = −mMG

(
x

(x2 + y2 + z2)3/2

)
,

F2 = −mMG

(
y

(x2 + y2 + z2)3/2

)
,

F3 = −mMG

(
z

(x2 + y2 + z2)3/2

)
.

div F = ∂F1

∂x
+ ∂F2

∂y
+ ∂F2

∂z
.

Using the quotient rule,

∂

∂x

(
x

(x2 + y2 + z2)3/2

)

=
(x2 + y2 + z2)3/2 − 3x2(x2 + y2 + z2)1/2

(x2 + y2 + z2)3

=
x2 + y2 + z2 − 3x2

(x2 + y2 + z2)5/2

=
−2x2 + y2 + z2

(x2 + y2 + z2)5/2

Similarly,

∂

∂y

(
y

(x2 + y2 + z2)3/2

)
=

x2 − 2y2 + z2

(x2 + y2 + z2)5/2

and

∂

∂z

(
z

(x2 + y2 + z2)3/2

)
=

x2 + y2 − 2z2

(x2 + y2 + z2)5/2

Hence div F= −mMG
(
−2x2+y2+z2+x2−2y2+z2+x2+y2−2z2

(x2+y2+z2)5/2

)
=0.

(2) (a)
∂r

∂x
=

1

2
(2x)(x2 + y2 + z2)−

1
2 =

x

r

which can be even more elegantly derived implicitly by

∂

∂x
(r2) =

∂

∂x
(x2 + y2 + z2) ⇒ 2r

∂r

∂x
= 2x ⇒ ∂r

∂x
=

x

r
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(b)

div(rnr) =
∂(xrn)

∂x
+

∂(yrn)

∂y
+

∂(zrn)

∂z

= x
∂rn

∂x
+ rn ∂x

∂x
+ y

∂rn

∂y
+ rn ∂y

∂y
+ z

∂rn

∂z
+ rn ∂z

∂z

= xnrn−1x

r
+ rn + ynrn−1y

r
+ rn + znrn−1 z

r
+ rn

= n(x2 + y2 + z2)rn−2 + 3rn = (n + 3)rn

so div(rnr) = (3 + n)rn.

(3)

∂

∂x
(
1

r
) =

∂

∂x
(x2 + y2 + z2)−

1
2 = −1

2
(x2 + y2 + z2)−

3
2

∂

∂x
(x2 + y2 + z2)

= −1

2
(2x)(x2 + y2 + z2)−

3
2 = −x(

√
x2 + y2 + z2)−3 = xr−3 = − x

r3

This is rather tedious. The calcuation is simplified if you retain r(x, y, z) in the calculation.
Note

∂r

∂x
=

1

2
(2x)(x2 + y2 + z2)−

1
2 =

x

r
which can be even more elegantly derived implicitly by

∂

∂x
(r2) =

∂

∂x
(x2 + y2 + z2) ⇒ 2r

∂r

∂x
= 2x ⇒ ∂r

∂x
=

x

r

Now, returning to the original problem we use the chain rule to show

∂

∂x

(
1

r

)
=

∂

∂r

(
1

r

)
∂r

∂x
= − 1

r2

∂r

∂x
= − 1

r2

x

r
= − x

r3
.

Now to find the second derivative we use the same method

∂

∂x

(
− x

r3

)
= − 1

r3
− x

∂

∂r

(
1

r3

)
∂r

∂x
= − 1

r3
+ 3

x

r4

∂r

∂x
= − 1

r3
+ 3

x

r4

x

r
= − 1

r3
+

3x2

r5

The other results follow by symmetry. Now

∇2

(
1

r

)
=

∂2

∂x2

(
1

r

)
+

∂2

∂y2

(
1

r

)
+

∂2

∂z2

(
1

r

)

= − 1

r3
+

3x2

r5
− 1

r3
+

3y2

r5
− 1

r3
+

3z2

r5

= − 3

r3
+

3(x2 + y2 + z2)

r5
= − 3

r3
+

3

r3
= 0.

Note since 1
r

and its derivatives are not defined at the origin we say ∇2

(
1

r

)
= 0 for

r 6= 0. (This caveat is extremely important in more advanced courses.)
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(4) The diagram below shows the path of integration: we shall choose to traverse the bound-
ary of the rectangle in a counterclockwise direction in order to apply the flux form of
Green’s theorem.

C1C2

C3

x

y

(1,0)

(0,1)

(−1,0)

The form of Green’s theorem we will use is
∮

C

v · n dS =
x

D

∇ · v dx dy.

The region bounded by the triangular path can be represented using rectangular coordi-
nates as D = {(x, y) | 0 ≤ y ≤ 1, y − 1 ≤ x ≤ 1− y}.
The divergence of the vector field is ∇ · v = 1− 2y.

Therefore the net outward flux is

x

D

∇ · v dx dy =

∫ 1

0

∫ 1−y

y−1

(1− 2y) dx dy

=

∫ 1

0

[x− 2xy]1−y
y−1 dy

=

∫ 1

0

(1− 3y + 2y2 − (−1 + 3y − 2y2))dy

=

∫ 1

0

(2− 6y + 4y2)dy

=

[
2y − 3y2 +

4

3
y3

]1

0

= 2− 3 +
4

3
=

1

3
.

This method seems to be a lot less effort than calculating all three line integrals.
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(5) (a) In this case the function z(u, v) can be written as a linear combination of x(u, v)
and y(u, v). Indeed,

2 + 4u + 5v =
5

3
(−u + 3v) +

17

6
(1 + 2u)− 5

6

⇒ z =
5

3
y +

17

6
x− 5

6
⇒ 17x + 10y − 6z = 5,

which is the equation of a plane.

(b) In this case we are able to express the function x(u, v) in terms of y(u, v) and z(u, v).
In this case,

y2 + z2 = x2 cos2 θ + x2 sin2 θ

= x2(cos2 θ + sin2 θ)

= x2.

The equation x2 = y2 + z2 describes a double cone with apex at the origin and with
axis of symmetry the x-axis.

(6) To find the equation to the tangent plane at the given point, we first find a normal vector
to the surface at that point (which will also be normal to the tangent plane), then give
an arbitrary vector lying in the plane whose dot product with the normal vector must be
zero, leading to the equation of the plane.

In this case, we have parametrisation of the surface given by the position vector

r(u, v) = (u + v)i + 3u2j + (u− v)k.

Two vectors tangent to the surface are ru and rv which are given by

ru = i + 6uj + k, rv = i− k.

Therefore a vector normal to the surface is given by

ru × rv =

∣∣∣∣∣∣

i j k
1 6u 1
1 0 −1

∣∣∣∣∣∣
= i(−6u− 0)− j(−1− 1) + k(−6u− 0)

= −6ui + 2j − 6uk.

At the point (2, 3, 0), we have z = 0 = u− v, so u = v. We also have x = 2 = u + v = 2u
(since u = v). Therefore we must have u = 1 = v, which is also consistent with y = 3 =
3u2. Therefore the point (2, 3, 0) corresponds to parameter values u = v = 1.

At these parameter values, the normal vector is

ru × rv = −6i + 2j − 6k.
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Let (x, y, z) be an arbitrary point in the tangent plane, so that the vector
−→
PX= (xi + yj + zk)− (2i + 3j) = (x− 2)i + (y − 3)j + zk

lies in the tangent plane. The equation for the tangent plane is then given by

(ru × rv)·
−→
PX = 0

⇒ −6(x− 2) + 2(y − 3)− 6z = 0

⇒ 3x− y + 3z = 3.

(7) Use a parametrisation based on polar coordinates:

x = r cos θ,

y = r sin θ,

z = r2 cos θ sin θ,

for 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

⇒ r(r, θ) = r cos θi + r sin θj + r2 cos θ sin θk.

We know that the surface area can be calculated using the surface integral:

surface area =
x

S

dS.

We can evaluate this surface integral in the usual way by working out the tangent vectors
rr and rθ, then calculating

x

S

dS =

∫ 1

0

∫ 2π

0

|rr × rθ| dθ dr.

To this end,

rr = cos θi + sin θj + 2r cos θ sin θ,

rθ = −r sin θi + r cos θj + r2(cos2 θ − sin2 θ)k

⇒ rr × rθ =

∣∣∣∣∣∣

i j k
cos θ sin θ 2r cos θ sin θ
−r sin θ r cos θ r2(cos2 θ − sin2 θ)

∣∣∣∣∣∣
= −r2 sin θi− r2 cos θj + rk

⇒ |rr × rθ| =
√

r4 sin2 θ + r4 cos2 θ + r2

= r
√

r2 + 1.

surface area =

∫ 1

0

∫ 2π

0

r
√

r2 + 1dθ dr

= 2π × 1

2

∫ 2

1

u1/2du subst. u = r2 + 1

= π ×
[
2

3
u3/2

]2

1

=
2π

3
(
√

8− 1).
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(8) As seen in lectures, the average value of a function f(x, y, z) over a surface S is given bys
S

f(x, y, z) dSs
S

dS
. The quantity in the denominator is just the surface area of S. In this

case, we need the surface area of the box {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3},
which is the sum of the area of each face, which you should be able to work out to be 22.

To work out the surface integral
{

S

(x + y + z)dS, we calculate the surface integral over

each face.

Let face 1 (S1) lie in the plane x = 0. It is the rectangle defined by {(y, z) | 0 ≤ y ≤
2, 0 ≤ z ≤ 3}. The function f restricted to this surface is f(0, y, z) = y + z, so that the
surface integral over this face is just

x

S1

(y + z) dS =

∫ 2

0

∫ 3

0

(y + z) dz dy

=

∫ 2

0

[
yz +

1

2
z2

]3

0

dy

=

∫ 2

0

(
3y +

9

2

)
dy

=

[
3

2
y2 +

9

2
y

]2

0

= 6 + 9 = 15.

Let face 2 (S2) lie in the plane x = 1. It is the rectangle defined by {(y, z) | 0 ≤ y ≤
2, 0 ≤ z ≤ 3}. The function f restricted to this surface is f(1, y, z) = 1 + y + z, so that
the surface integral over this face is just

x

S2

(1 + y + z) dS =

∫ 2

0

∫ 3

0

(1 + y + z) dz dy

=

∫ 2

0

[
z + yz +

1

2
z2

]3

0

dy

=

∫ 2

0

(
3 + 3y +

9

2

)
dy

=

[
3y +

3

2
y2 +

9

2
y

]2

0

= 6 + 6 + 9 = 21.

Let face 3 (S3) lie in the plane y = 0. It is the rectangle defined by {(x, z) | 0 ≤ x ≤
1, 0 ≤ z ≤ 3}. The function f restricted to this surface is f(x, 0, z) = x + z, so that the
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surface integral over this face is just

x

S3

(x + z) dS =

∫ 1

0

∫ 3

0

(x + z) dz dx

=

∫ 1

0

[
xz +

1

2
z2

]3

0

dx

=

∫ 1

0

(
3x +

9

2

)
dx

=

[
3

2
x2 +

9

2
x

]1

0

=
3

2
+

9

2
= 6.

Let face 4 (S4) lie in the plane y = 2. It is the rectangle defined by {(x, z) | 0 ≤ x ≤
1, 0 ≤ z ≤ 3}. The function f restricted to this surface is f(x, 2, z) = x + 2 + z, so that
the surface integral over this face is just

x

S4

(x + 2 + z) dS =

∫ 1

0

∫ 3

0

(x + 2 + z) dz dx

=

∫ 1

0

[
xz + 2z +

1

2
z2

]3

0

dx

=

∫ 1

0

(
3x + 6 +

9

2

)
dx

=

[
3

2
x2 + 6x +

9

2
x

]1

0

=
3

2
+ 6 +

9

2
= 12.

Let face 5 (S5) lie in the plane z = 0. It is the rectangle defined by {(x, y) | 0 ≤ x ≤
1, 0 ≤ y ≤ 2}. The function f restricted to this surface is f(x, y, 0) = x + y, so that the
surface integral over this face is just

x

S5

(x + y) dS =

∫ 1

0

∫ 2

0

(x + y) dy dx

=

∫ 1

0

[
xy +

1

2
y2

]2

0

dx

=

∫ 1

0

(2x + 2) dx

=
[
x2 + 2x

]1

0
= 1 + 2 = 3.

Let face 6 (S6) lie in the plane z = 3. It is the rectangle defined by {(x, y) | 0 ≤ x ≤
1, 0 ≤ y ≤ 2}. The function f restricted to this surface is f(x, y, 3) = x + y + 3, so that
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the surface integral over this face is just

x

S6

(x + y + 3) dS =

∫ 1

0

∫ 2

0

(x + y + 3) dy dx

=

∫ 1

0

[
xy +

1

2
y2 + 3y

]2

0

dx

=

∫ 1

0

(2x + 8) dx

=
[
x2 + 8x

]1

0
= 1 + 8 = 9.

The surface integral over the entire surface of the box is just

{

S

(x + y + z)dS =
6∑

i=1

(x

Si

(x + y + z)dS

)
= 15 + 21 + 6 + 12 + 3 + 9 = 66.

Therefore the average value of the function is
66

22
= 3.

Note that these values lie on the closed curve given by the intersection of the plane
f(x, y, z) = x+y+z = 3 and the surface of the box. The answer is not too surprising since
on the surface of the box, the maximum value is 6 at the point (1, 2, 3) and the minimum
value is 0 at (0, 0, 0). Setting different values of the function f(x, y, z) = x+ y + z defines
planes x+y +z = c for constant c ∈ [0, 6]. As we vary c from 0 to 6, the “half-way point”
would be 3 which turns out to be the average value.
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(9) (a)

v = (xy2 − xy)i− (
1

2
x2y2 − x2y)j

∇ · v =
∂

∂x
(xy2 − xy) +

∂

∂y
(
1

2
x2y2 − x2y)

= y2 − y − x2y + x2 = y(y − 1)− x2(y − 1)

= (y − x2)(y − 1)

(b)

From part (a) ∇ · v = 0 when y = x2 or y = 1.

0

210−2 −1

0

1

2

3

y

x

y=x^2

y=1

Zero divergence 

Lines

Area of Positive Divergence

Area of Negative

Divergence

(c)

∇ · v =
∂

∂x
(y) +

∂

∂y
(x + y3) = 3y2

∇ · v = 0 when y = 0. Also ∇ · v > 0 for all other points (x, y) not on y = 0.

Comment : If a closed curve straddles regions of positive and negative divergence, it is
possible that the net outward flux across the closed curve is zero (only in this case is it
possible). That can never happen for the field in part (c).

9



(10)

The surface S is given parametrically by

r(φ, θ) = a cos(θ)i + a sin(φ) sin(θ)j + a sin(θ)k,−π

2
≤ φ ≤ π

2
, 0 ≤ θ ≤ 2π

surface area =
x

S

dS =
x

D

|rφ × rθ|dφdθ

rφ = a cos(φ)sin(θ)j

rθ = −a sin(θ)i + a sin(φ)cos(θ)j + a cos(θ)k

rφ × rθ =

∣∣∣∣∣∣

i j k
0 a cos(φ) sin(θ) 0

−a sin(θ) a sin(φ) cos(θ) a cos(θ)

∣∣∣∣∣∣
.

= a cos(φ) sin(θ)(a cos(θ)i + a sin(θ)k)

= a2 cos(φ) sin(θ) cos(θ)i + a2 cos(φ) sin2(θ)k

|rφ × rθ| =
√

a4 cos2(φ) sin2(θ) cos2(θ) + a4 cos2(φ) sin4(θ)

=
√

a4 cos2(φ) sin2(θ)

= a2 cos(φ)
√

sin2(θ)

since
√

cos2(φ) = cos(φ) For
−π

2
≤ φ ≤ π

2

Note that
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√
sin2(θ) =

{
sin(θ) if 0 ≤ θ ≤ π
− sin(θ) if π ≤ θ ≤ 2π

which implies

|rφ × rθ| =
{

a2 cos(φ) sin(θ) if 0 ≤ θ ≤ π
−a2 cos(φ) sin(θ) if π ≤ θ ≤ 2π

Separating the region into two with D = D1 ∪D2

D1 =
{

(θ, φ)
∣∣∣0 ≤ θ ≤ π,−π

2
≤ φ ≤ π

2

}

D2 =
{

(θ, φ)
∣∣∣π ≤ θ ≤ 2π,−π

2
≤ φ ≤ π

2

}

Surface area =
x

D1

|rφ × rθ| dθdφ +
x

D2

|rφ × rθ| dθdφ

=

∫ π

0

∫ π
2

−π
2

a2 cos(φ) sin(θ)dφdθ −
∫ 2π

π

∫ π
2

−π
2

a2 cos(φ) sin(θ)dφdθ

= a2

(∫ π

0

sin(θ)dθ

) (∫ π
2

−π
2

cos(φ)dφ

)
− a2

(∫ 2π

π

sin(θ)dθ

) (∫ π
2

−π
2

cos(φ)dφ

)

= a2 [− cos(θ)]π0 [sin(φ)]
π
2

−π
2
− a2 [− cos(θ)]2π

π [sin(φ)]
π
2

−π
2

= 4a2 + 4a2 = 8a2
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