DEPARTMENT OF MATHEMATICS

MATH2000 Eigenvalues and diagonalisation

(1) Find matrices which diagonalize the following matrices:

(a)
$$\begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$

(2) Diagonalize the matrix $A = \begin{pmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{pmatrix}$.

(3) Which of the following matrices can be diagonalized?

(a)
$$\begin{pmatrix} 2 & 1 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
 (b) $\begin{pmatrix} 4 & -1 & 2 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ (c) $\begin{pmatrix} 7 & 4 & -4 \\ 4 & -8 & -1 \\ -4 & -1 & -8 \end{pmatrix}$.
(4) Let $C = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$.

- 1. Find the eigenvalues and eigenvectors of the matrix C.
- 2. Construct a matrix P such that $P^T CP = D$ where D is a diagonal matrix and find a general expression for the matrix C^n .
- (5) (a) Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & \omega \\ -\omega & 0 \end{bmatrix}$.
 - (b) The differential equations governing the path of a small particle in a rotating fluid field are $\dot{x}_1 = -\omega x_2 \& \dot{x}_2 = \omega x_1$. Write this as a matrix equation and seek solutions of the form $\boldsymbol{x}(t) = \boldsymbol{z}e^{\lambda t}$ where \boldsymbol{z} is a constant vector. Show that

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_0 \cos \omega t \\ x_0 \sin \omega t \end{bmatrix} \text{ if } \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} x_0 \\ 0 \end{bmatrix}$$

(6) Solve the system of differential equations

$$\dot{x}_1 = x_1 - x_2 + 4x_3 \dot{x}_2 = 3x_1 + 2x_2 - x_3 \dot{x}_3 = 2x_1 + x_2 - x_3.$$

Note that the coefficient matrix here is the same as the matrix in a prior question.

(7) Solve the recurrence relation $x_{n+1} = x_n + 2x_{n-1}$, given that $x_0 = 1$ and $x_1 = 3$.

(8) Find an orthogonal matrix which diagonalizes the matrix $\begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$.

(9) Let
$$A = \begin{pmatrix} 2 & 3 & 6 \\ 0 & 5 & 12 \\ 0 & 0 & -1 \end{pmatrix}$$
.

(a) Find a non-singular matrix P which diagonalizes A.

Background for (b): If an $n \times n$ matrix A has n linearly independent eigenvectors, we have seen that $A = PDP^{-1}$, where D is a diagonal matrix of eigenvalues. We can write

$$D = \lambda_1 E_{11} + \lambda_2 E_{22} + \ldots + \lambda_n E_{nn},$$

where, for example, in the 3×3 case

$$E_{11} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ E_{22} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ E_{33} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

We then have $A = \lambda_1 S_1 + \lambda_2 S_2 + \ldots + \lambda_n S_n$, where $S_i = P E_{ii} P^{-1}$. This expansion is called the *spectral decomposition* of A.

(b) Use your answer in part (a) to calculate the matrices S_1 , S_2 and S_3 for A, and hence write down the spectral decomposition of A.

Background for (c): Since there are three linearly independent eigenvectors for A, they form a basis of \mathbb{R}^3 . The matrix S_i projects onto the subspace of \mathbb{R}^3 spanned by the eigenvector \boldsymbol{v}_i corresponding to eigenvalue λ_i . This means that $S_i \boldsymbol{v}_i = \boldsymbol{v}_i$ and $S_i \boldsymbol{v}_j = \boldsymbol{0}$ (for $i \neq j$). In other words, if you take any vector

$$\boldsymbol{w} = a_1 \boldsymbol{v}_1 + a_2 \boldsymbol{v}_2 + a_3 \boldsymbol{v}_3$$

in \mathbb{R}^3 , multiplying by S_i extracts the \boldsymbol{v}_i component. Using the above expansion of \boldsymbol{w} , we have $S_i \boldsymbol{w} = a_i \boldsymbol{v}_i$. We call S_i a projection matrix. It turns out that a matrix S is a projection if and only if $S^2 = S$, making them very easy to identify.

(c) Verify that the matrices S_1 , S_2 and S_3 obtained in part (b) are indeed projection matrices, then use this fact to write the vector $\boldsymbol{w} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ as a linear combination of eigenvectors of A.