DEPARTMENT OF MATHEMATICS

MATH2000 Eigenvalues and diagonalisation (solutions)

(1) (a) First solve det $(A - \lambda I) = 0$ to find the eigenvalues.

$$det (A - \lambda I) = (1 - \lambda)[(2 - \lambda)(-1 - \lambda) + 1] + [3(-1 - \lambda) + 2] + 4[3 - 2(2 - \lambda)] = (1 - \lambda)[\lambda^2 - \lambda - 1] + [-3\lambda - 1] + 4[-1 + 2\lambda] = (1 - \lambda)[\lambda^2 - \lambda - 1] + 5\lambda - 5 = (1 - \lambda)[\lambda^2 - \lambda - 1] - 5(1 - \lambda) = (1 - \lambda)[\lambda^2 - \lambda - 1 - 5] = (1 - \lambda)[\lambda^2 - \lambda - 6] = (1 - \lambda)(\lambda + 2)(\lambda - 3)$$

so the eigenvalues are $\lambda = 1, -2, 3$.

If **v** is an eigenvector corresponding to $\lambda = 1$, $(A - I)\mathbf{v} = \mathbf{0}$; i.e.

$$\begin{pmatrix} 0 & -1 & 4 \\ 3 & 1 & -1 \\ 2 & 1 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This gives the system of equations $-v_2+4v_3 = 0$, $3v_1+v_2-v_3 = 0$, $2v_1+v_2-2v_3 = 0$, which has solution $v_1 = -v_3$, $v_2 = 4v_3$ so

$$\mathbf{v} = \alpha \left(\begin{array}{c} -1\\ 4\\ 1 \end{array} \right)$$

for $\alpha \neq 0$.

Similarly $\alpha \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha \neq 0$, are the eigenvectors corresponding to $\lambda = -2$, and $\alpha \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha \neq 0$, are the eigenvectors corresponding to $\lambda = 3$. We may choose $\mathbf{v_1} = \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$, $\mathbf{v_2} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, and $\mathbf{v_3} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$. These vectors

are easily confirmed to be linearly independent (as they theoretically must be, since they correspond to distinct eigenvalues).

Hence
$$P = \begin{pmatrix} -1 & -1 & 1 \\ 4 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$
 diagonalizes A and
$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

(b) First solve det
$$(A - \lambda I) = 0$$
 to find the eigenvalues.
det $(A - \lambda I) = (5 - \lambda)[(3 - \lambda)^2 - 4] = (5 - \lambda)^2(1 - \lambda)$ so there are only two eigenvalues,
 $\lambda = 5, 1.$

•

As in part (a), if **v** is an eigenvector corresponding to $\lambda = 1$,

$$\mathbf{v} = \alpha \left(\begin{array}{c} 1\\1\\0 \end{array} \right)$$

for $\alpha \neq 0$.

If **v** is an eigenvector corresponding to $\lambda = 5$, $(A - 5I)\mathbf{v} = \mathbf{0}$.

$$\left(\begin{array}{rrrr} -2 & -2 & 0\\ -2 & -2 & 0\\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{r} v_1\\ v_2\\ v_3 \end{array}\right) = \left(\begin{array}{r} 0\\ 0\\ 0 \end{array}\right).$$

Hence $v_1 + v_2 = 0$.

$$\mathbf{v} = \left(\begin{array}{c} \alpha \\ -\alpha \\ \beta \end{array}\right)$$

where α, β are not both zero.

We may choose
$$\mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\mathbf{v_2} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, and $\mathbf{v_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. These vectors are easily checked to be linearly independent.

Hence
$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 diagonalizes *A* and (1 0)

$$P^{-1}AP = \left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & 5 & 0\\ 0 & 0 & 5 \end{array}\right).$$

(There are many other solutions).

(2) First solve det $(A - \lambda I) = 0$ to find the eigenvalues. det $(A - \lambda I) = (5 - \lambda)[(1 - \lambda)(-11 - \lambda) + 4 \cdot 8] - 8[4(-11 - \lambda) + 4 \cdot 8] + 16[-16 + 4(1 - \lambda)] = 9 - 3\lambda - 5\lambda^2 - \lambda^3$. Note that the coefficients add to zero, so $\lambda = 1$ in the cubic equation gives zero, hence $(1 - \lambda)$ must be a factor. Expanding $(1 - \lambda)(a + b\lambda + c\lambda^2)$ then gives $a + (b-a)\lambda + (c-b)\lambda^2 - c\lambda^3$, from which it is not too dificult to work out a = 9, b = 6 and c = 1. The characteristic polynomial then factorises as $(1 - \lambda)(\lambda + 3)^2$. The eigenvalues are $\lambda = -3, 1$.

A similar argument to those of the preceding questions shows that if \mathbf{v} is an eigenvector corresponding to $\lambda = 1$,

$$\mathbf{v} = \alpha \begin{pmatrix} 2\\1\\-1 \end{pmatrix}$$

for $\alpha \neq 0$.

If **v** is an eigenvector corresponding to $\lambda = -3$, $(A + 3I)\mathbf{v} = \mathbf{0}$.

$$A = \begin{pmatrix} 8 & 8 & 16 \\ 4 & 4 & 8 \\ -4 & -4 & -8 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Hence $v_1 + v_2 + 2v_3 = 0$.

$$\mathbf{v} = \left(\begin{array}{c} -2\alpha - \beta \\ \beta \\ \alpha \end{array}\right)$$

where α, β are not both zero.

We may choose the two linearly independent vectors $\mathbf{v_1} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$

which with $\mathbf{v}_3 = \begin{pmatrix} 2\\1\\-1 \end{pmatrix}$ provide 3 linearly indendent eigenvectors. Hence $P = \begin{pmatrix} -1 & -2 & 2\\1 & 0 & 1\\0 & 1 & -1 \end{pmatrix}$ diagonalizes A and $P^{-1}AP = \begin{pmatrix} -3 & 0 & 0\\0 & -3 & 0\\0 & 0 & 1 \end{pmatrix}$.

(There are many other solutions).

 (3) (a) First solve det (A − λI) = 0 to find the eigenvalues. det (A−λI) = (4−λ)[(2−λ)²−3] so there are three distinct eigenvalues, λ = 4, 2±√3. So the matrix is diagonalizable.

(b) det $(A - \lambda I) = (4 - \lambda)[(2 - \lambda)^2 - 1] - [-(2 - \lambda) - 2] = (4 - \lambda)(2 - \lambda)^2$. So the eigenvalues are $\lambda = 4, 2$. To have 3 linearly independent vectors, we would need 2 corresponding

to $\lambda = 2$. If **v** is an eigenvector corresponding to $\lambda = 2$, $(A - 2I)\mathbf{v} = \mathbf{0}$, i.e.

$$\left(\begin{array}{rrrr} 2 & -1 & 2\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{array}\right) \left(\begin{array}{r} v_1\\ v_2\\ v_3 \end{array}\right) = \left(\begin{array}{r} 0\\ 0\\ 0 \end{array}\right).$$

Hence $v_2 = 0$ and $v_1 + v_3 = 0$, so $\mathbf{v} = \begin{pmatrix} \alpha \\ 0 \\ -\alpha \end{pmatrix}$. But there are not 2 linearly

independent vectors of this form. So the matrix is not diagonalizable.

Note that the algebraic multiplicity of $\lambda = 2$ is 2, but the geometric multiplicity is only 1.

- (c) This matrix is real symmetric, and thus (from lectures) diagonalizable (by an othogonal matrix).
- (4) To find the eigenvalues, we solve the equation $\det (C I\lambda) = 0$.

$$\begin{vmatrix} 2-\lambda & 1 & 0\\ 1 & 2-\lambda & 0\\ 0 & 0 & 4-\lambda \end{vmatrix} = 0$$
$$\Rightarrow (4-\lambda)((2-\lambda)^2 - 1) = 0$$
$$\Rightarrow (4-\lambda)(2-\lambda - 1)(2-\lambda + 1) = 0$$

So the eigenvalues are $\lambda_1 = 4$, $\lambda_2 = 3$, and $\lambda_3 = 1$.

For
$$\lambda = 4$$
: $\begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \boldsymbol{v}_1 = 0$

$$\Rightarrow \boldsymbol{v}_1 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

For
$$\lambda = 3$$
: $\begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \boldsymbol{v}_2 = 0$
 $\Rightarrow \boldsymbol{v}_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}$
For $\lambda = 1$: $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \boldsymbol{v}_3 = 0$

$$\Rightarrow \boldsymbol{v}_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}.$$

The matrix P is formed by the eigenvectors:

$$P = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \end{bmatrix}$$

Now, since C is symmetric, $P^{-1} = P^T$ and we have $P^T C P = D$ or $C = P D P^T$ so $C^n = P D^n P^T$ giving

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 1\\ 0 & 1 & -1\\ \sqrt{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} 4^n & 0 & 0\\ 0 & 3^n & 0\\ 0 & 0 & 1^n \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 0 & \sqrt{2}\\ 1 & 1 & 0\\ 1 & -1 & 0 \end{bmatrix}$$
$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 3^n & 1^n\\ 0 & 3^n & -1^n\\ \sqrt{2}4^n & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & \sqrt{2}\\ 1 & 1 & 0\\ 1 & -1 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3^n + 1^n & 3^n - 1^n & 0\\ 3^n - 1^n & 3^n + 1^n & 0\\ 0 & 0 & 2.4^n \end{bmatrix}$$
$$C^n = \begin{bmatrix} \frac{3^n + 1}{3^n - 1} & \frac{3^n - 1}{2} & 0\\ \frac{3^n - 1}{2} & \frac{3^n + 1}{2} & 0\\ 0 & 0 & 4^n \end{bmatrix}$$

(5) (a) The eigenvalues are given by $|A - I\lambda| = 0$. So:

$$\begin{vmatrix} -\lambda & \omega \\ -\omega & -\lambda \end{vmatrix}$$
$$\Rightarrow \lambda^{2} + \omega^{2} = 0$$
$$\Rightarrow \lambda = \pm i\omega$$
For $\lambda_{1} = i\omega$, $\begin{bmatrix} -i\omega & \omega \\ -\omega & -i\omega \end{bmatrix} \boldsymbol{v}_{1} = 0$
$$\Rightarrow \boldsymbol{v}_{1} = \begin{bmatrix} 1 \\ i \end{bmatrix}$$
For $\lambda_{1} = -i\omega$, $\begin{bmatrix} i\omega & \omega \\ -\omega & i\omega \end{bmatrix} \boldsymbol{v}_{2} = 0$
$$\Rightarrow \boldsymbol{v}_{2} = \begin{bmatrix} 1 \\ -i \end{bmatrix}$$

(b) Substition of $\boldsymbol{x}(t) = \boldsymbol{z} e^{\lambda t}$ gives

$$\lambda \boldsymbol{z} e^{\lambda t} = A \boldsymbol{z} e^{\lambda t} \text{ or } \lambda \boldsymbol{z} = A \boldsymbol{z}$$

So λ and \boldsymbol{z} are eigenpairs of the matrix A:

$$\lambda_1 = i\omega, \ \boldsymbol{v}_1 = \begin{bmatrix} 1\\ -i \end{bmatrix} \quad \lambda_2 = -i\omega, \ \boldsymbol{v}_2 = \begin{bmatrix} 1\\ i \end{bmatrix}$$

so the general solutions is

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ -i \end{bmatrix} e^{i\omega t} + c_2 \begin{bmatrix} 1 \\ i \end{bmatrix} e^{-i\omega t}$$

where c_1 and c_2 are in general complex.

Since
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} x_0 \\ 0 \end{bmatrix}$$
,
 $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ -i \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} x_0 \\ 0 \end{bmatrix}$
 $\Rightarrow c_1 = c_2 = \frac{x_0}{2}$
 $\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} x_0 \frac{e^{i\omega t} + e^{-i\omega t}}{2i} \\ x_0 \frac{e^{i\omega t} - e^{-i\omega t}}{2i} \end{bmatrix}$
 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_0 \cos \omega t \\ x_0 \sin \omega t \end{bmatrix}$

Note that we can rewrite the system of two first order ODEs as one second order ODE.

$$\dot{x}_1 = -\omega x_2 \quad \Rightarrow \quad \ddot{x}_1 = -\omega \dot{x}_2$$
$$\Rightarrow \quad \ddot{x}_1 = -\omega(\omega x_1)$$
$$\Rightarrow \quad \ddot{x}_1 + \omega^2 x_1 = 0$$

Our solution for x_1 and x_2 is consistent with our usual method of solution for a linear homogeneous second order ODE.

(6) Write the system in matrix form: $\dot{\mathbf{x}} = A\mathbf{x}$ where $A = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}$ and $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.

From an earlier question it can be shown, $P = \begin{pmatrix} -1 & -1 & 1 \\ 4 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$ diagonalizes A and

$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & 3 \end{pmatrix} = D$$

say. Let $\mathbf{x} = P\mathbf{y}$ so $P\dot{\mathbf{y}} = AP\mathbf{y} \Rightarrow \dot{\mathbf{y}} = P^{-1}AP\mathbf{y} = D\mathbf{y}$, which corresponds to the system of equations $\dot{y_1} = y_1$, $\dot{y_2} = -2y_2$, $\dot{y_3} = 3y_3$. The solution is $\mathbf{y} = \begin{pmatrix} c_1 e^t \\ c_2 e^{-2t} \\ c_3 e^{3t} \end{pmatrix}$. Hence $\mathbf{x} = P\mathbf{y}$

$$= \begin{pmatrix} -1 & -1 & 1 \\ 4 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 e^t \\ c_2 e^{-2t} \\ c_3 e^{3t} \end{pmatrix}$$
$$= \begin{pmatrix} -c_1 e^t - c_2 e^{-2t} + c_3 e^{3t} \\ 4c_1 e^t + c_2 e^{-2t} + 2c_3 e^{3t} \\ c_1 e^t + c_2 e^{-2t} + c_3 e^{3t} \end{pmatrix}.$$

(7) Consider the system $\begin{cases} x_{n+1} = x_n + 2x_{n-1} \\ x_n = x_n \end{cases}$. In matrix form, $\mathbf{x_n} = A\mathbf{x_{n-1}}$ where $A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ and $\mathbf{x_n} = \begin{pmatrix} x_{n+1} \\ x_n \end{pmatrix}$. The solution is $\mathbf{x_n} = A^n \mathbf{x_0}$, and here $\mathbf{x_0} = \begin{pmatrix} x_1 \\ x_0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

We will diagonalize A in order to find A^n . First we solve det $(A - \lambda I) = 0$ to find the eigenvalues.

det $(A - \lambda I) = (1 - \lambda)(-\lambda) - 2 = (\lambda - 2)(\lambda + 1)$ so the eigenvalues are $\lambda = 2, -1$. The eigenvectors corresponding to 2 are $\begin{pmatrix} 2\alpha \\ \alpha \end{pmatrix}$ for $\alpha \neq 0$ and the eigenvectors corresponding to -1 are $\begin{pmatrix} -\alpha \\ \alpha \end{pmatrix}$ for $\alpha \neq 0$. Hence $P = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$ diagonalizes A to $D = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$. Now $D = P^{-1}AP \Rightarrow D^n = P^{-1}A^nP \Rightarrow PD^nP^{-1} = A^n$ i.e.

$$A^{n} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 2^{n+1} - (-1)^{n+1} & 2^{n+1} + 2(-1)^{n+1} \\ 2^{n} - (-1)^{n} & 2^{n} + 2(-1)^{n} \end{pmatrix}$$

Hence

$$\mathbf{x_n} = A^n \mathbf{x_0} = A^n \begin{pmatrix} 3\\1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 4 \times 2^{n+1} - (-1)^{n+1}\\4 \times 2^n - (-1)^n \end{pmatrix}.$$

Since $\mathbf{x_n} = \begin{pmatrix} x_{n+1}\\x_n \end{pmatrix}$, the solution is $x_n = \frac{1}{3}(2^{n+2} - (-1)^n).$

(8) There are only two eigenvalues, $\lambda = 5, 1$.

$$\mathbf{v} = \left(\begin{array}{c} 1\\1\\0\end{array}\right)$$

is an eigenvector corresponding to $\lambda = 1$. For $\lambda = 5$ we may choose $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, and

 $\mathbf{v}_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$. These vectors are easily checked to be linearly independent.

Hence $P = [\hat{\mathbf{v}}_1 | \hat{\mathbf{v}}_2 | \hat{\mathbf{v}}_3] = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & 1 \end{pmatrix}$ diagonalizes A and $P^T = P^{-1}$ so $P^T A P = \begin{pmatrix} 1 & 0 & 0\\ 0 & 5 & 0\\ 0 & 0 & 5 \end{pmatrix}.$ (9) Part (a)

First determine the eigenvalues of the matrix A. Solving the characteristic equation.

$$\det(A) = \det \begin{pmatrix} 2-\lambda & 3 & 6\\ 0 & 5-\lambda & 12\\ 0 & 0 & -1-\lambda \end{pmatrix} = (2-\lambda)(5-\lambda)(-1-\lambda) + 0 + 0 = 0$$

The eignvalues obtained are $\lambda_1 = 2 \ \lambda_2 = 5$ and $\lambda_3 = -1$.

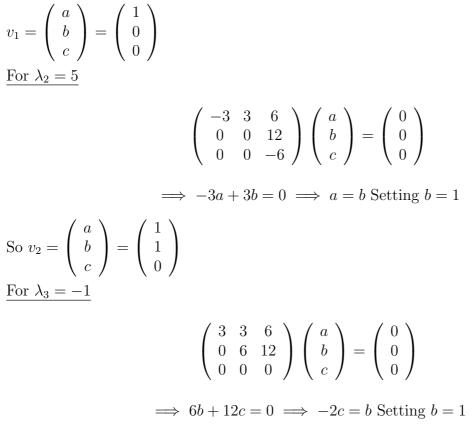
Since the eigenvalues λ_i are distinct and non zero, this implies can use a matrix of eigenvectors $P = [v_1, v_2, v_3]$ to diagonalize A.

First determine the eigenvectors

For
$$\lambda_1 = 2$$

$$\begin{pmatrix} 2-2 & 3 & 6 \\ 0 & 5-2 & 12 \\ 0 & 0 & -1-2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 3 & 6 \\ 0 & 3 & 12 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Setting a = 1



So
$$v_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$$

So $P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$. This can be easily inverted to get $P^{-1} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$
And $P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ a diagonal matrix of the eigenvalues.

Part (b)

$$\begin{split} S_1 &= PE_{11}P^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \\ S_1 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ S_2 &= PE_{22}P^{-1} &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \\ S_2 &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \\ S_2 &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \\ S_3 &= PE_{33}P^{-1} &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \\ S_3 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \end{split}$$

$$S_3 = \left(\begin{array}{rrr} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{array}\right)$$

And so the spectral decomposition of A is

$$A = \lambda_1 S_1 + \lambda_2 S_2 + \lambda_3 S_3$$

$$\begin{pmatrix} 2 & 3 & 6 \\ 0 & 5 & 12 \\ 0 & 0 & -1 \end{pmatrix} = 2 \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + 5 \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} - 1 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

Part (c)

First verify that S_1 , S_2 , S_3 , are projection matrices.

$$S_1 S_1 = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$S_1 S_1 = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

So S_1 is a projection matrix. Similarly it can be shown that $S_2S_2 = S_2$ and $S_3S_3 = S_3$ Now determining the projection of w on v_1 multiply by the projection matrix S_1

$$S_1 w = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a - b - 2c \\ 0 \\ 0 \end{pmatrix} = (a - b - 2c)v_1$$

Similary

$$S_2 w = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} b+2c \\ b+2c \\ 0 \end{pmatrix} = (b+2c)v_2$$
$$S_3 w = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ -2c \\ c \end{pmatrix} = cv_3$$

And so w as a linear combination of eigenvectors of A is

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = (a - b - 2c)v_1 + (b + 2c)v_2 + cv_3$$
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = (a - b - 2c)\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (b + 2c)\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c\begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$$