
DEPARTMENT OF MATHEMATICS

MATH2000
Eigenvalues and diagonalisation (solutions)

(1) (a) First solve det (A− λI) = 0 to find the eigenvalues.

det (A− λI) = (1− λ)[(2− λ)(−1− λ) + 1] + [3(−1− λ) + 2] + 4[3− 2(2− λ)]

= (1− λ)[λ2 − λ− 1] + [−3λ− 1] + 4[−1 + 2λ]

= (1− λ)[λ2 − λ− 1] + 5λ− 5

= (1− λ)[λ2 − λ− 1]− 5(1− λ)

= (1− λ)[λ2 − λ− 1− 5]

= (1− λ)[λ2 − λ− 6]

= (1− λ)(λ + 2)(λ− 3)

so the eigenvalues are λ = 1,−2, 3.

If v is an eigenvector corresponding to λ = 1, (A− I)v = 0; i.e.




0 −1 4
3 1 −1
2 1 −2







v1

v2

v3


 =




0
0
0


 .

This gives the system of equations −v2+4v3 = 0, 3v1+v2−v3 = 0, 2v1+v2−2v3 = 0,
which has solution v1 = −v3, v2 = 4v3 so

v = α



−1

4
1




for α 6= 0.

Similarly α



−1
1
1


 , α 6= 0, are the eigenvectors corresponding to λ = −2, and

α




1
2
1


 , α 6= 0, are the eigenvectors corresponding to λ = 3.

We may choose v1 =



−1

4
1


 ,v2 =



−1
1
1


, and v3 =




1
2
1


. These vectors

are easily confirmed to be linearly independent (as they theoretically must be, since
they correspond to distinct eigenvalues).
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Hence P =



−1 −1 1

4 1 2
1 1 1


 diagonalizes A and

P−1AP =




1 0 0
0 −2 0
0 0 3


 .

(b) First solve det (A− λI) = 0 to find the eigenvalues.

det (A−λI) = (5−λ)[(3−λ)2−4] = (5−λ)2(1−λ) so there are only two eigenvalues,
λ = 5, 1.

As in part (a), if v is an eigenvector corresponding to λ = 1,

v = α




1
1
0




for α 6= 0.

If v is an eigenvector corresponding to λ = 5, (A− 5I)v = 0.


−2 −2 0
−2 −2 0

0 0 0







v1

v2

v3


 =




0
0
0


 .

Hence v1 + v2 = 0.

v =




α
−α

β




where α, β are not both zero.

We may choose v1 =




1
1
0


 ,v2 =




1
−1
0


, and v3 =




0
0
1


. These vectors are

easily checked to be linearly independent.

Hence P =




1 1 0
1 −1 0
0 0 1


 diagonalizes A and

P−1AP =




1 0 0
0 5 0
0 0 5


 .

(There are many other solutions).

(2) First solve det (A− λI) = 0 to find the eigenvalues.

det (A−λI) = (5−λ)[(1−λ)(−11−λ)+4 ·8]−8[4(−11−λ)+4 ·8]+16[−16+4(1−λ)] =
9− 3λ− 5λ2 − λ3. Note that the coefficients add to zero, so λ = 1 in the cubic equation

2



gives zero, hence (1 − λ) must be a factor. Expanding (1 − λ)(a + bλ + cλ2) then gives
a+(b−a)λ+(c−b)λ2−cλ3, from which it is not too dificult to work out a = 9, b = 6 and
c = 1. The characteristic polynomial then factorises as (1 − λ)(λ + 3)2. The eigenvalues
are λ = −3, 1.

A similar argument to those of the preceding questions shows that if v is an eigenvector
corresponding to λ = 1,

v = α




2
1

−1




for α 6= 0.

If v is an eigenvector corresponding to λ = −3, (A + 3I)v = 0.

A =




8 8 16
4 4 8
−4 −4 −8







v1

v2

v3


 =




0
0
0


 .

Hence v1 + v2 + 2v3 = 0.

v =



−2α− β

β
α




where α, β are not both zero.

We may choose the two linearly independent vectors v1 =



−1

1
0


 ,v2 =



−2
0
1


,

which with v3 =




2
1
−1


 provide 3 linearly indendent eigenvectors.

Hence P =



−1 −2 2

1 0 1
0 1 −1


 diagonalizes A and

P−1AP =



−3 0 0

0 −3 0
0 0 1


 .

(There are many other solutions).

(3) (a) First solve det (A− λI) = 0 to find the eigenvalues.

det (A−λI) = (4−λ)[(2−λ)2−3] so there are three distinct eigenvalues, λ = 4, 2±√3.
So the matrix is diagonalizable.

(b) det (A−λI) = (4−λ)[(2−λ)2−1]−[−(2−λ)−2] = (4−λ)(2−λ)2. So the eigenvalues
are λ = 4, 2. To have 3 linearly independent vectors, we would need 2 corresponding
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to λ = 2. If v is an eigenvector corresponding to λ = 2, (A− 2I)v = 0, i.e.



2 −1 2
1 0 1
0 1 0







v1

v2

v3


 =




0
0
0


 .

Hence v2 = 0 and v1 + v3 = 0, so v =




α
0
−α


. But there are not 2 linearly

independent vectors of this form. So the matrix is not diagonalizable.

Note that the algebraic multiplicity of λ = 2 is 2, but the geometric multiplicity is
only 1.

(c) This matrix is real symmetric, and thus (from lectures) diagonalizable (by an oth-
ogonal matrix).

(4) To find the eigenvalues, we solve the equation det (C − Iλ) = 0.
∣∣∣∣∣∣

2− λ 1 0
1 2− λ 0
0 0 4− λ

∣∣∣∣∣∣
= 0

⇒ (4− λ)((2− λ)2 − 1) = 0

⇒ (4− λ)(2− λ− 1)(2− λ + 1) = 0

So the eigenvalues are λ1 = 4, λ2 = 3, and λ3 = 1.

For λ = 4:



−2 1 0
1 −2 0
0 0 0


 v1 = 0

⇒ v1 =




0
0
1




For λ = 3:



−1 1 0
1 −1 0
0 0 1


 v2 = 0

⇒ v2 =




1√
2

1√
2

0




For λ = 1:




1 1 0
1 1 0
0 0 3


 v3 = 0

⇒ v3 =




1√
2

− 1√
2

0


 .
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The matrix P is formed by the eigenvectors:

P =




0 1√
2

1√
2

0 1√
2
− 1√

2

1 0 0




Now, since C is symmetric, P−1 = P T and we have P T CP = D or C = PDP T so
Cn = PDnP T giving

1√
2




0 1 1
0 1 −1√
2 0 0







4n 0 0
0 3n 0
0 0 1n


 1√

2




0 0
√

2
1 1 0
1 −1 0




1√
2

1√
2




0 3n 1n

0 3n −1n√
24n 0 0







0 0
√

2
1 1 0
1 −1 0


 =

1

2




3n + 1n 3n − 1n 0
3n − 1n 3n + 1n 0

0 0 2.4n




Cn =




3n+1
2

3n−1
2

0
3n−1

2
3n+1

2
0

0 0 4n




(5) (a) The eigenvalues are given by |A− Iλ| = 0. So:

∣∣∣∣
−λ ω
−ω −λ

∣∣∣∣

⇒ λ2 + ω2 = 0

⇒ λ = ±iω

For λ1 = iω,

[−iω ω
−ω −iω

]
v1 = 0

⇒ v1 =

[
1
i

]

For λ1 = −iω,

[
iω ω
−ω iω

]
v2 = 0

⇒ v2 =

[
1
−i

]

(b) Substition of x(t) = zeλt gives

λzeλt = Azeλt or λz = Az

5



So λ and z are eigenpairs of the matrix A:

λ1 = iω, v1 =

[
1
−i

]
λ2 = −iω, v2 =

[
1
i

]

so the general solutions is

[
x1(t)
x2(t)

]
= c1

[
1
−i

]
eiωt + c2

[
1
i

]
e−iωt

where c1 and c2 are in general complex.

Since

[
x1(0)
x2(0)

]
=

[
x0

0

]
,

[
x1(0)
x2(0)

]
= c1

[
1
−i

]
+ c2

[
1
i

]
=

[
x0

0

]

⇒ c1 = c2 =
x0

2[
x1(t)
x2(t)

]
=

[
x0

eiωt+e−iωt

2

x0
eiωt−e−iωt

2i

]

[
x1

x2

]
=

[
x0 cos ωt
x0 sin ωt

]

Note that we can rewrite the system of two first order ODEs as one second order
ODE.

ẋ1 = −ωx2 ⇒ ẍ1 = −ωẋ2

⇒ ẍ1 = −ω(ωx1)

⇒ ẍ1 + ω2x1 = 0.

Our solution for x1 and x2 is consistent with our usual method of solution for a linear
homogeneous second order ODE.

(6) Write the system in matrix form: ẋ = Ax where A =




1 −1 4
3 2 −1
2 1 −1


 and x =




x1

x2

x3


 .

From an earlier question it can be shown, P =



−1 −1 1

4 1 2
1 1 1


 diagonalizes A and

P−1AP =




1 0 0
0 −2 0
0 0 3


 = D
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say. Let x = Py so P ẏ = APy ⇒ ẏ = P−1APy = Dy, which corresponds to the system

of equations ẏ1 = y1, ẏ2 = −2y2, ẏ3 = 3y3. The solution is y =




c1e
t

c2e
−2t

c3e
3t


. Hence

x = Py

=



−1 −1 1

4 1 2
1 1 1







c1e
t

c2e
−2t

c3e
3t




=



−c1e

t − c2e
−2t + c3e

3t

4c1e
t + c2e

−2t + 2c3e
3t

c1e
t + c2e

−2t + c3e
3t


 .

(7) Consider the system

{
xn+1 = xn + 2xn−1

xn = xn
. In matrix form, xn = Axn−1 where A =

(
1 2
1 0

)
and xn =

(
xn+1

xn

)
. The solution is xn = Anx0, and here x0 =

(
x1

x0

)
=

(
3
1

)
.

We will diagonalize A in order to find An. First we solve det (A − λI) = 0 to find the
eigenvalues.

det (A − λI) = (1 − λ)(−λ) − 2 = (λ − 2)(λ + 1) so the eigenvalues are λ = 2,−1. The

eigenvectors corresponding to 2 are

(
2α
α

)
for α 6= 0 and the eigenvectors corresponding

to −1 are

( −α
α

)
for α 6= 0. Hence P =

(
2 −1
1 1

)
diagonalizes A to D =

(
2 0
0 −1

)
.

Now D = P−1AP ⇒ Dn = P−1AnP ⇒ PDnP−1 = An i.e.

An =

(
2 −1
1 1

)(
2 0
0 −1

)
· 1

3

(
1 1
−1 2

)

=
1

3

(
2n+1 − (−1)n+1 2n+1 + 2(−1)n+1

2n − (−1)n 2n + 2(−1)n

)
.

Hence

xn = Anx0 = An

(
3
1

)
=

1

3

(
4× 2n+1 − (−1)n+1

4× 2n − (−1)n

)
.

Since xn =

(
xn+1

xn

)
, the solution is xn = 1

3
(2n+2 − (−1)n).

(8) There are only two eigenvalues, λ = 5, 1.

v =




1
1
0



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is an eigenvector corresponding to λ = 1. For λ = 5 we may choose v2 =




1
−1
0


, and

v3 =




0
0
1


. These vectors are easily checked to be linearly independent.

Hence P = [v̂1|v̂2|v̂3] =




1/
√

2 1/
√

2 0

1/
√

2 −1/
√

2 0
0 0 1


 diagonalizes A and P T = P−1 so

P T AP =




1 0 0
0 5 0
0 0 5


 .
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(9) Part (a)

First determine the eigenvalues of the matrix A. Solving the characteristic equation.

det(A) = det




2− λ 3 6
0 5− λ 12
0 0 −1− λ


 = (2− λ)(5− λ)(−1− λ) + 0 + 0 = 0

The eignvalues obtained are λ1 = 2 λ2 = 5 and λ3 = −1.

Since the eigenvalues λi are distinct and non zero, this implies can use a matrix of eigen-
vectors P = [v1, v2, v3] to diagonalize A.

First determine the eigenvectors

For λ1 = 2




2− 2 3 6
0 5− 2 12
0 0 −1− 2







a
b
c


 =




0
0
0







0 3 6
0 3 12
0 0 −3







a
b
c


 =




0
0
0




Setting a = 1

v1 =




a
b
c


 =




1
0
0




For λ2 = 5



−3 3 6
0 0 12
0 0 −6







a
b
c


 =




0
0
0




=⇒ −3a + 3b = 0 =⇒ a = b Setting b = 1

So v2 =




a
b
c


 =




1
1
0




For λ3 = −1




3 3 6
0 6 12
0 0 0







a
b
c


 =




0
0
0




=⇒ 6b + 12c = 0 =⇒ −2c = b Setting b = 1
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So v3 =




a
b
c


 =




0
−2
1




So P =




1 1 0
0 1 −2
0 0 1


. This can be easily inverted to get P−1 =




1 −1 −2
0 1 2
0 0 1




And P−1AP =




2 0 0
0 5 0
0 0 −1


 a diagonal matrix of the eigenvalues.

Part (b)

S1 = PE11P
−1 =




1 1 0
0 1 −2
0 0 1







1 0 0
0 0 0
0 0 0







1 −1 −2
0 1 2
0 0 1




S1 =




1 0 0
0 0 0
0 0 0







1 −1 −2
0 1 2
0 0 1




S1 =




1 −1 −2
0 0 0
0 0 0




S2 = PE22P
−1 =




1 1 0
0 1 −2
0 0 1







0 0 0
0 1 0
0 0 0







1 −1 −2
0 1 2
0 0 1




S2 =




0 1 0
0 1 0
0 0 0







1 −1 −2
0 1 2
0 0 1




S2 =




0 1 2
0 1 2
0 0 0




S3 = PE33P
−1 =




1 1 0
0 1 −2
0 0 1







0 0 0
0 0 0
0 0 1







1 −1 −2
0 1 2
0 0 1




S3 =




0 0 0
0 0 −2
0 0 1







1 −1 −2
0 1 2
0 0 1



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S3 =




0 0 0
0 0 −2
0 0 1




And so the spectral decomposition of A is

A = λ1S1 + λ2S2 + λ3S3




2 3 6
0 5 12
0 0 −1


 = 2




1 −1 −2
0 0 0
0 0 0


 + 5




0 1 2
0 1 2
0 0 0


− 1




0 0 0
0 0 −2
0 0 1




Part (c)

First verify that S1, S2, S3, are projection matrices.

S1S1 =




1 −1 −2
0 0 0
0 0 0







1 −1 −2
0 0 0
0 0 0




S1S1 =




1 −1 −2
0 0 0
0 0 0




So S1 is a projection matrix. Similarly it can be shown that S2S2 = S2 and S3S3 = S3

Now determining the projection of w on v1 multiply by the projection matrix S1

S1w =




1 −1 −2
0 0 0
0 0 0







a
b
c


 =




a− b− 2c
0
0


 = (a− b− 2c)v1

Similary

S2w =




0 1 2
0 1 2
0 0 0







a
b
c


 =




b + 2c
b + 2c

0


 = (b + 2c)v2

S3w =




0 0 0
0 0 −2
0 0 1







a
b
c


 =




0
−2c
c


 = cv3

And so w as a linear combination of eigenvectors of A is
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


a
b
c


 = (a− b− 2c)v1 + (b + 2c)v2 + cv3




a
b
c


 = (a− b− 2c)




1
0
0


 + (b + 2c)




1
1
0


 + c




0
−2
1



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