
DEPARTMENT OF MATHEMATICS

MATH2000
First Order ODEs solutions.

(1) (a)

The ODE is separable:
The equation can be written in the form

y′ = x

(
1− y2

y

)

which is separable. Hence we have
∫

y

1− y2
dy =

∫
x dx.

For the left hand side, substitute u = y2 ⇒ du = 2y dy

⇒
∫

y

1− y2
dy =

1

2

∫
du

1− u
= −1

2
ln |1− u|

= −1

2
ln |1− y2| = r.h.s

=
1

2
x2 + c

⇒ 1− y2 = ae−x2

(a = ±e−2c)

or
y2 = 1− ae−x2

.

(b)

Multiply both sides of the ODE by yex2
to make it exact:

The equation becomes

yex2

y′ + xy2ex2

= xex2

⇒ (y2 − 1)xex2

+ yex2

= 0.

We can check this is homogeneous since

∂

∂y

(
(y2 − 1)xex2

)
= 2xyex2

=
∂

∂y

(
yex2

)
.

Therefore we seek a function f(x, y) such that

∂f

∂x
= (y2 − 1)xex2
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and
∂f

∂y
= yex2

.

From the first equation, such a function is of the form

f(x, y) =
1

2
(y2 − 1)ex2

+ g(y)

for some function g of y only. Differentiating this partially with respect to y gives

∂f

∂y
= yex2

+ g′(y).

Comparing this expression with the other expression for
∂f

∂y
above, we must have g′(y) = 0

and therefore g(y) is constant. The implicit solution to the ODE is then

f(x, y) =
1

2
(y2 − 1)ex2

= c,

which can be expressed in the form of the solution to part (a).

(2) To show that the equation
P (x, y) + Q(x, y)y′ = 0

is exact, we show that
∂P

∂y
=

∂Q

∂x
.

In the case of 2x2 + xy2 + x2yy′ = 0, P (x, y) = 2x2 + xy2 and Q(x, y) = x2y

⇒ ∂P

∂y
= 2xy =

∂Q

∂x

so the equation is indeed exact. Therefore there exists a function f(x, y) such that fx = P
and fy = Q and f(x, y) = C implicitly defines y(x). That is,

fx = 2x2 + xy2

⇒ f(x, y) =
2

3
x3 +

1

2
x2y2 + g(y)

where g(y) is an arbitrary function of y. Differentiating with respect to y then gives

fy = x2y + g′(y).

We also have

Q(x, y) = x2y = fy

⇒ g′(y) = 0
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so g(y) must be a constant. Therefore

2

3
x3 +

1

2
x2y2 = c

implicitly defines our general solution y(x). Imposing the condition y(1) = −2 gives
c = 8/3. Therefore

y2 =
16

3x2
− 4x

3

⇒ y = −
√

16

3x2
− 4x

3

where we chose the minus sign so that the solution satisfies y(1) = −2.

(3) You should recognise that the equation is separable. Therefore

∫
dy

y
= 2

∫
x− 1

x(x− 2)
dx.

For the right hand side, we can use partial fractions. You should obtain

x− 1

x(x− 2)
=

1/2

x
+

1/2

x− 2
.

Therefore

2

∫
x− 1

x(x− 2)
dx =

∫
dxx +

∫
dxx− 2

= ln |x|+ ln |x− 2|+ c

= l.h.s = ln |y|
⇒ y = ax(x− 2) (a = ±ec)

is the general solution.

Now consider y(x0) = y0.

(a) Note that when x = 0 or x = 2, the general solution becomes y = 0. Therefore if
x0 = 0 or x0 = 2 and y0 6= 0, there cannot be a solution. Note also in this case the
ODE is not even satisfied by these initial conditions. So, no solution for

(x0, y0) = (0, p), (2, p) p 6= 0.

(b) If x0 = 0 or x0 = 2 and y0 = 0, the general solution is consistent for any value of the
constant a in the general solution. So in the case

(x0, y0) = (0, 0), (2, 0)

there are infinitely many solutions.
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(c) For all values of x0 6= 0, 2 we are able to solve for the constant a in the general
solution, which will ensure there is precisely one solution. So, there is a unique
solution for

(x0, y0) = (p, q), p 6= 0, 2 and ∀q.
Note that we can write the ODE as

y′ =
2(x− 1)y

x(x− 2)
= f(x, y).

In the case when x = 0, 2, the function f(x, y) is not defined, so is certainly not contin-
uous there. The criterion for existence as presented in lectures then does not give any
information about existence of solutions for x = 0, 2. When x 6= 0, 2, f(x, y) is continuous
so we can conclude that there exists at least one solution (existence). Also,

fy =
2(x− 1)

x(x− 2)
,

which is also continuous when x 6= 0, 2 so we can conclude that there exists at most one
solution (uniqueness).

(4) Set P (x, y) = ax + by and Q(x, y) = cx + dy. Recall from lectures that an equation of
the form

P (x, y) + Q(x, y)
dy

dx
= 0

is exact if and only if
∂P

∂y
=

∂Q

∂x
.

In this case
∂P

∂y
= b,

∂Q

∂x
= c,

so the equation is exact if and only if b = c. Imposing this condition gives the exact
equation

ax + by + (bx + dy)
dy

dx
= 0.

Hence there is a function f(x, y) such that

∂f

∂x
= ax + by,

∂f

∂y
= bx + dy.

Integrating the first equation (treating y as constant) gives

f(x, y) =
1

2
ax2 + bxy + g(y) (some function g(y))

⇒ ∂f

∂y
= bx + g′(y)

= bx + dy
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by the second equation above. Therefore

g′(y) = dy

⇒ g(y) =
1

2
dy2 (ignoring constant which appears in next line)

⇒ f(x, y) =
1

2
ax2 + bxy +

1

2
dy2 = k (k constant)

is an implicit solution to the ODE.
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