
DEPARTMENT OF MATHEMATICS

MATH2000
Flux integrals and Gauss’ divergence theorem (solutions)

(1) The hemisphere can be represented as

V = {(r, θ, φ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/2}.

We have by direct calculation

divF = 3(x2 + y2 + z2) = 3r2

in terms of spherical coordinates.

⇒
y

V

divF dV = 3

∫ π/2

0

∫ 2π

0

∫ 1

0

r2 · r2 sin φ dr dθ dφ

= 3

(∫ π/2

0

sin φ dφ

) (∫ 2π

0

dθ

)(∫ 1

0

r4 dr

)

= 3× 1× 2π × 1

5
=

6π

5
.

Now to evaluate
{

S

F · n dS. In this case the surface comprises of two parts: the base of

the hemisphere which lies in the x-y plane, denoted S1, and the part of the sphere itself,
denoted S2. So that

{

S

F · n dS =
x

S1

F · n1 dS +
x

S2

F · n2 dS

where n1 and n2 are outwardly pointing unit normal vectors to the surfaces S1 and S2

respectively.

We expect the integral
x

S1

F · n1 dS to be zero since the k component of F is 0 when F

is restricted to the x-y plane, so there is no flux across that surface.

To verify this by direct calculation, we must first parametrise the surface S1. Since it is
just a circular disc in the x-y plane, we have

r(r, θ) = r cos θi + r sin θj, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

We then take the tangent vectors

rθ = −r sin θi + r cos θj

rr = cos θi + sin θj
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We can calculate rr × rθ = rk. However, this is directed into the solid. We require this
vector to be directed outwards from the solid, so instead we’ll take rθ × rr = −rk.

In terms of our parametrisation,

F (r, θ) = r3 cos3 θi + r3 sin3 θj,

so that the dot product
F (r, θ) · (rθ × rr) = 0

which tells us that the flux across S1 will be zero as originally thought.

To calculate the flux across S2, we parametrise S2 (compare with the spherical coordinate
transformation) as

r(θ, φ) = cos θ sin φi + sin θ sin φj + cos φk, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/2.

The tangent vectors are

rθ = − sin θ sin φi + cos θ sin φj

rφ = cos θ cos φi + sin θ cos φj − sin φk.

To find a vector normal to the surface S2, take

rφ × rθ = cos θ sin2 φi + sin θ sin2 φj + sin φ cos φk.

We should check the direction to make sure it is directed outwards from the surface. Take
for example the parameter values φ = π/2 and θ = 0. This gives rφ × rθ = i which is
directed out, so the direction is ok.

In terms of the parameters, we can write

F (θ, φ) = cos3 θ sin3 φi + sin3 θ sin3 φj + cos3 φk.

so that the dot product

F (θ, φ) · (rφ × rθ) = cos4 θ sin5 φ + sin4 θ sin5 φ + sin φ cos4 φ.

The flux integral we need to evaluate is then

∫ 2π

0

∫ π/2

0

((cos4 θ + sin4 θ) sin5 φ + sin φ cos4 φ) dφ dθ.

Using cos2 θ = 1
2
(1 + cos 2θ) we have

cos4 θ =
1

4
(1 + cos 2θ)(1 + cos 2θ) =

1

4
(1 + 2 cos 2θ + cos2 2θ)

=
1

4
(1 + 2 cos 2θ +

1

2
(1 + cos 4θ))

=
3

8
+

1

2
cos 2θ +

1

8
cos 4θ.
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It follows that

cos4 θ + sin4 θ = cos4 θ + (1− cos2 θ)(1− cos2 θ)

= 1− 2 cos2 θ + 2 cos4 θ

= 1− (1 + cos 2θ) +
3

4
+ cos 2θ +

1

4
cos 4θ

=
3

4
+

1

4
cos 4θ.

Finally note that we can write sin5 φ = sin φ(1− 2 cos2 φ + cos4 φ).

Putting this together, the flux across S2 is

∫ 2π

0

∫ π/2

0

(
3

4
+

1

4
cos 4θ

)
sin φ(1− 2 cos2 φ + cos4 φ) dφ dθ

+

∫ 2π

0

∫ π/2

0

sin φ cos4 φ dφ dθ

=

(∫ 2π

0

(
3

4
+

1

4
cos 4θ

)
dθ

) (∫ π/2

0

sin φ(1− 2 cos2 φ + cos4 φ)dφ

)

+

(∫ 2π

0

dθ

) (∫ π/2

0

sin φ cos4 φ dφ

)

Using the substitution u = cos φ in both φ integrals gives

=

([
3

4
θ +

1

16
sin 4θ

]2π

0

×
∫ 1

0

(1− 2u2 + u4)du

)
+

(
2π ×

∫ 1

0

u4 du

)

=
3π

2

[
u− 2

3
u3 +

1

5
u5

]1

0

+ 2π

[
1

5
u5

]1

0

=
3π

2

(
1− 2

3
+

1

5

)
+

2π

5
=

6π

5
.

Therefore

{

S

F · n dS =
x

S1

F · n1 dS +
x

S2

F · n2 dS = 0 +
6π

5
=

6π

5
.

So we have shown that for this example both sides of the equation in Gauss’ theorem are
equal.
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(2) Note that in this case we cannot use Gauss’ divergence theorem since the vector field

F =
1

x
i is undefined at any point in the y-z plane (ie. when x = 0), part of which lies in

the region enclosed by the surface. We must evaluate
{

S

F · n dS directly.

Since the surface is the unit sphere, the position vector r = xi + yj + zk will also be an
outwardly pointing unit normal (since x2 + y2 + z2 = 1 on the surface). Taking n = r,
we have that F · n = 1. Therefore the flux evaluates to

{

S

F · n dS =
{

S

dS

= surface area of the unit sphere

= 4π.

(3) A diagram of the solid is as follows:
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The outward flux can be calculated as
{

S

F · n

where S is the closed surface of the box, F is the vector field, and n is an outwardly
pointing unit normal vector. The surface S consists of six open surfaces: the six faces
of the box. We can evaluate the flux integral directly by calculating the outward flux
through each face:
{

S

F ·n =
x

S1

F ·n dS+
x

S2

F ·n dS+
x

S3

F ·n dS+
x

S4

F ·n dS+
x

S5

F ·n dS+
x

S6

F ·n dS.
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We represent each open surface follows:

– S1 is the “base” of the box which lies in the plane z = 3 (and is therefore parallel
to the x-y plane). An outwardly pointing unit normal is n = −k. Restricted to S1,
the vector field is given by

F = xi + 12yj + 9k, for 1 ≤ x ≤ 3, 0 ≤ y ≤ 1.

Therefore over S1,

F · n = (xi + 12yj + 9k) · (−k) = −9.

The surface integral is then

x

S1

F · n dS =
x

S1

(−9) dS = −9
x

S1

dS.

Since
x

S1

dS is just the area of S1, which is a rectangle of area = 2, so

x

S1

dS = 2 ⇒
x

S1

F · n dS = −9× 2 = −18.

– S2 is the “lid” of the box which lies in the plane z = 5. An outwardly pointing unit
normal is n = k. Restricted to S2, the vector field is given by

F = xi + 12yj + 15k, for 1 ≤ x ≤ 3, 0 ≤ y ≤ 1.

Therefore over S2,
F · n = (xi + 12yj + 15k) · k = 15.

The surface integral is then

x

S2

F · n dS =
x

S2

(15) dS = 25
x

S2

dS.

Since
x

S2

dS is just the area of S2, which is a rectangle of area = 2, so

x

S2

dS = 2 ⇒
x

S2

F · n dS = 15× 2 = 30.

– S3 is the “back” of the box which lies in the plane x = 1. An outwardly pointing
unit normal is n = −i. Restricted to S3, the vector field is given by

F = 1i + 12yj + 3zk, for 0 ≤ y ≤ 1, 3 ≤ z ≤ 5.
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Therefore over S3,

F · n = (1i + 12yj + 3zk) · (−i) = −1.

The surface integral is then

x

S3

F · n dS =
x

S3

(−1) dS = −
x

S3

dS.

Since
x

S3

dS is just the area of S3, which is a rectangle of area = 2, so

x

S3

dS = 2 ⇒
x

S3

F · n dS = −2.

– S4 is the “front” of the box which lies in the plane x = 3. An outwardly pointing
unit normal is n = i. Restricted to S4, the vector field is given by

F = 3i + 12yj + 3zk, for 0 ≤ y ≤ 1, 3 ≤ z ≤ 5.

Therefore over S4,
F · n = (3i + 12yj + 3zk) · (i) = 3.

The surface integral is then

x

S4

F · n dS =
x

S4

(3) dS = 3
x

S4

dS.

Since
x

S4

dS is just the area of S4, which is a rectangle of area = 2, so

x

S4

dS = 2 ⇒
x

S4

F · n dS = 3× 2 = 6.

– S5 is the ‘left side” of the box which lies in the plane y = 0 (the x-z plane). An
outwardly pointing unit normal is n = −j. Restricted to S5, the vector field is given
by

F = xi + 3zk, for 1 ≤ x ≤ 3, 3 ≤ z ≤ 5.

Therefore over S5,
F · n = (xi + 3zk) · (−j) = 0.

The surface integral is then

x

S5

F · n dS =
x

S5

(0) dS = 0.
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– S6 is the “right side” of the box which lies in the plane y = 1. An outwardly pointing
unit normal is n = j. Restricted to S6, the vector field is given by

F = xi + 12j + 3zk, for 1 ≤ x ≤ 3, 3 ≤ z ≤ 5.

Therefore over S6,
F · n = (xi + 12j + 3zk) · (j) = 12.

The surface integral is then

x

S6

F · n dS =
x

S6

(12) dS = 12
x

S6

dS.

Since
x

S6

dS is just the area of S6, which is a rectangle of area = 4, so

x

S6

dS = 4 ⇒
x

S6

F · n dS = 12× 4 = 48.

Putting all of this information together gives

{

S

F ·n =
x

S1

F ·n dS+
x

S2

F ·n dS+
x

S3

F ·n dS+
x

S4

F ·n dS+
x

S5

F ·n dS+
x

S6

F ·n dS

= −18 + 30 + (−2) + 6 + 0 + 48 = 64.

Using the divergence theorem, we can also calculate the outward flux as

y

V

divF dV,

where V is the region enclosed by S (ie. the box). We can calculate

divF =
∂

∂x
(x) +

∂

∂y
(12y) +

∂

∂z
(3z) = 1 + 12 + 3 = 16.

The outward flux is then
y

V

divF dV = 16
y

V

dV

= 16× (vol. of box)

= 16× (2× 2× 1) = 64.

We have therefore verified the divergence theorem. In this case, it is a lot less work to
calculate the volume integral compared to the flux integral.

7



(4) Use the divergence theorem. The region (in this case a sphere of radius 5) can be repre-
sented as

V = {(r, θ, φ) | 0 ≤ r ≤ 5, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π}
in term of spherical polar coordinates. We also have

divF =
∂

∂x
(3x) +

∂

∂y
(4y) +

∂

∂z
(5z) = 3 + 4 + 5 = 12.

Hence by the divergence theorem the flux out of the surface is

y

V

divF dV = 12

∫ 2π

0

∫ π

0

∫ 5

0

r2 sin φ dr dφ dθ

= 12

(∫ 2π

0

dθ

)(∫ π

0

sin φ dφ

)(∫ 5

0

r2 dr

)

= 12× 2π × 2× 125

3
= 2000π.

Alternatively, we could make the observation that

y

V

divF dV = 12
y

V

dV

= 12× ( volume of sphere of radius 5)

= 12×
(

4

3
π53

)
= 2000π.

(5) We need to find
{

S

F · n dS. By Gauss’ divergence theorem this is equal to
y

V

divF dV .

divF =
∂

∂x
(x) +

∂

∂y
(3y) +

∂

∂z
(6z)

= 1 + 3 + 6 = 10.

In cylindrical polar coordinates, the cone is z2 = (r cos θ)2 + (r sin θ)2 = r2 ⇒ z = r in
this case since 0 ≤ z ≤ 2. The region in R3 is

V = {(r, θ, z) | 0 ≤ z ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤ r ≤ z}.
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So flux

= 10

∫ 2

0

∫ 2π

0

∫ z

0

r dr dθ dz

= 10

∫ 2

0

∫ 2π

0

1

2
z2 dθ dz

= 5

∫ 2

0

z2dz

∫ 2π

0

dθ

= 5

[
1

3
z3

]2

0

· 2π

=
80π

3
.

(6) F = (x3 + xy2 + xz2)i + (x2y + y3 + yz2)j + (x2z + y2z + z3)k so

divF =
∂

∂x
(x3 + xy2 + xz2) +

∂

∂y
(x2y + y3 + yz2)

+
∂

∂z
(x2z + y2z + z3)

= (3x2 + y2 + z2) + (x2 + 3y2 + z2)

+(x2 + y2 + 3z2)

= 5r2.

The sphere is described by

V = {(r, θ, φ) | 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π}.

So by Gauss’ divergence theorem, the flux across the surface of the sphere

=

∫ a

0

∫ 2π

0

∫ π

0

(5r2) · r2 sin φ dφ dθ dr

= 5

∫ a

0

r4 dr

∫ 2π

0

dθ

∫ π

0

sin φ dφ

= 5

[
1

5
r5

]a

0

· [θ]2π
0 · [− cos φ]π0

= 5 · 1

5
a5 · 2π · 2

= 4πa5.
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