
DEPARTMENT OF MATHEMATICS

MATH2000
Gaussian elimination, LU and PLU decomposition (solutions)

(1) For each part of this question, there are many possible row equivalent matrices. The
following are only a few examples.

(a)

(
2 4 0
0 0 0

)
by doing r1 ↔ r2 (interchange row 1 and row 2).

(b)




1 1 1
0 −1 −1
0 0 −1


 by doing r2 → r2 − r1, r3 → r3 − r1, r2 ↔ r3,

or




1 0 0
0 1 0
0 0 1


 by doing r1 ↔ r3, r2 → r2 − r1, r3 → r3 − r1, r3 → r3 − r2,

or many others.

(c)




2 0 0
0 1 3
0 0 0


 by doing r1 ↔ r2, r3 → r3 − 2r1.

(d)




1 −2 3
0 −3 6
0 0 0


 by doing r2 → r2 + 4r1, r3 → r3 − 7r1, r3 → r3 + 2r2.

(2) One way is to start with r2 → r2 − 1+i
2+i

r1, r3 → r3 − 1+2i
2+i

r1, giving




2 + i −1 + 2i 2

0 −1 + i− (1+i)(−1+2i)
2+i

1− 2+2i
2+i

0 −2 + i− (1+2i)(−1+2i)
2+i

1 + i− 2+4i
2+i




=




2 + i −1 + 2i 2
0 0 −1

5
(−1 + 2i)

0 0 −1
5
(3 + i)




and then do r3 → r3 − 3+i
−1+2i

r2, giving




2 + i −1 + 2i 2
0 0 −1

5
(−1 + 2i)

0 0 0


 ,

which is an equivalent r.e.f. matrix.
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(3) First find the inverse of the matrix given.




1 0 −1 1 0 0
2 3 2 0 1 0
1 1 1 0 0 1




r2 → r2 − 2r1

r3 → r3 − r1




1 0 −1 1 0 0
0 3 4 −2 1 0
0 1 2 −1 0 1




r3 → r3 − 1
3
r2




1 0 −1 1 0 0
0 3 4 −2 1 0
0 0 2

3
−1

3
−1

3
1




r3 → 3
2
r3




1 0 −1 1 0 0
0 3 4 −2 1 0
0 0 1 −1

2
−1

2
3
2




r2 → r2 − 4r3




1 0 −1 1 0 0
0 3 0 0 3 −6
0 0 1 −1

2
−1

2
3
2




r2 → 1
3
r2




1 0 −1 1 0 0
0 1 0 0 1 −2
0 0 1 −1

2
−1

2
3
2




r1 → r1 + r3




1 0 0 1
2

−1
2

3
2

0 1 0 0 1 −2
0 0 1 −1

2
−1

2
3
2




(4)
Ax = b ⇒ LUx = b

Set y = Ux then solve Ly = b for y

y =




3
−1
2




x =




1
−1
2




(5) (a) Let U = (uij) and V = (vij) be upper triangular matrices i.e. uij = vij = 0 for
1 ≤ j < i ≤ n. Now (UV )ij = Σn

k=1uikvkj, and in this sum uik = 0 for 1 ≤ k < i
and vkj = 0 for j < k ≤ n. So when i > j all summands are 0 and thus (UV )ij = 0.
Hence UV is upper triangular.

For the inverse of U , the jth column of U−1 is the solution x of Ux = ej. Since
(ej)i = 0 for i with j < i ≤ n, solution by back substitution gives xn = xn−1 = · · · =
xj+1 = 0. Since xi = (U−1)ij we have (U−1)ij = 0 if j < i ≤ n, so U−1 is upper
triangular.
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(b) If L and M are lower triangular, LT and MT are upper triangular, so MT LT is upper
triangular by (a), and hence LM = (MT LT )T is lower triangular. Also (LT )−1 is
upper triangular, so L−1 = ((LT )−1)T is lower triangular.

(c) Put L = (lij) so lij = 0 if 1 ≤ i < j ≤ n and lii = 1. The jth column of
L−1 is the solution x of Lx = ej. The first j equations of this system are x1 =
0, l21x1 + x2 = 0, l31x1 + l32x2 + x3 = 0, . . . , lj1x1 + lj2x2 + · · · + ljj−1xj−1 + xj = 1.
So x1 = x2 = · · · = xj−1 = 0, xj = 1. Hence (L−1)jj = xj = 1.

(6) (a) In this case, we can use Gaussian elimination with no row interchanges. As in
lectures, we record the steps in compact form: eg, when R2 → R2 − cR1 makes the
(2, 1) entry 0, place 76540123c there, but it is really zero!




3 1 0 −5
−6 −1 −1 10

3 3 2a− 2 a− 5
0 −1 1 0




R2 → R2 − (−2)R1

R3 → R3 − 1R1

−→




3 1 0 −5

GFED@ABC−2 1 −1 0

?>=<89:;1 2 2a− 2 a

0 −1 1 0




R3 → R3 − 2R2

R4 → R4 − (−1)R2

−→




3 1 0 −5

GFED@ABC−2 1 −1 0

?>=<89:;1 ?>=<89:;2 2a a

0 GFED@ABC−1 0 0




The entries of L below the main diagonal are then all the entries with a circle around
them. Hence A = LU where

L =




1 0 0 0
−2 1 0 0

1 2 1 0
0 −1 0 1


 , U =




3 1 0 −5
0 1 −1 0
0 0 2a a
0 0 0 0


 .

(b) Since det(A) = det(L) det(U), with det(L) = 1 and det(U) = 3× 1× 2a× 0 = 0 (ie.
the product of the diagonal entries), we have

det(A) = 0.
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(c) Set y = Ux and first solve Ly = b, that is,




1 0 0 0
−2 1 0 0

1 2 1 0
0 −1 0 1







y1

y2

y3

y4


 =




1
−2

1
0


 ,

row 1 ⇒ y1 = 1

row 2 ⇒ −2y1 + y2 = −2 ⇒ y2 = 0

row 3 ⇒ y1 + 2y2 + y3 = 1 ⇒ y3 = 0

row 4 ⇒ −2y2 + y4 = 0 ⇒ y4 = 0.

Now solve Ux = y, that is




3 1 0 −5
0 1 −1 0
0 0 2a a
0 0 0 0







x1

x2

x3

x4


 =




1
0
0
0




row 3 ⇒ 2ax3 + ax4 = 0 ⇒ x4 = −2x3 (a 6= 0)

row 2 ⇒ x2 − x3 = 0 ⇒ x2 = x3

row 1 ⇒ 3x1 + x2 − 5x4 = 1 ⇒ x1 =
1

3
(1− 11x3).

Set x3 = t, then the solution is

x =




1
3
(1− 11t)

t
t
−2t


 , for any t.

(d) Using the same method as in part (c), we have




1 0 0 0
−2 1 0 0

1 2 1 0
0 −1 0 1







y1

y2

y3

y4


 =




2
−5

0
1


 ⇒

y1 = 2
y2 = −1
y3 = 0
y4 = 0

Now solve Ux = y. That is,




3 1 0 −5
0 1 −1 0
0 0 2a a
0 0 0 0







x1

x2

x3

x4


 =




2
−1

0
0


 ⇒

x4 = −2x3

x2 = x3 − 1
x1 = 1

3
(3− 11x3)
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Set x3 = t, so that the solution is

x =




1
3
(3− 11t)
t− 1

t
−2t


 , for any t.

(7) Try doing Gaussian elimination, using the same notation as in lectures and the previous
question: 



1 2 3 4
4 8 12 17
3 6 12 14
2 9 11 12




R2 → R2 − 4R1

R3 → R3 − 3R1

R4 → R4 − 2R1

−→




1 2 3 4

?>=<89:;4 0 0 1

?>=<89:;3 0 3 2

?>=<89:;2 5 5 4




In order to continue the Gaussian reduction, we need to swap rows 2 and 4. So after
R2 ↔ R4,

−→




1 2 3 4

?>=<89:;2 5 5 4

?>=<89:;3 0 3 2

?>=<89:;4 0 0 1




which is then in r.e.f. In other words, we have

PA = LU,

where P =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


, L =




1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1


 , U =




1 2 3 4
0 5 5 4
0 0 3 2
0 0 0 1


 .

Also, the decomposition is A = PLU , since P 2 = I.

This is the same L and U we would obtain if we had swapped rows 2 and 4 initially.
However, it was difficult to predict that we needed this operation at the beginning.

det(A) = − det(U) = −1× 5× 3× 1 = −15,

where we need the minus sign since we have used an odd number of row swaps (in this
case only one row swap).
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(8) Part (a) In this case, we can use Gaussian elimination with no row interchanges. As in
lectures, we record the steps in compact form: eg, when R2 → R2 − cR1 makes the (2, 1)
entry 0, place 76540123c there, but it is really zero!



−1 −3 −4

3 10 −10
−2 −4 a


 R2 → R2 − (−3)R1

R3 → R3 − (+2)R1




−1 −3 −4

GFED@ABC−3 1 −22

GFED@ABC+2 2 a + 8




R3 → R3 − (+2)R2




−1 −3 −4

GFED@ABC−3 1 −22

GFED@ABC+2 GFED@ABC+2 a + 52




The entries of L below the main diagonal are then all the entries with a circle around
them. Hence A = LU where

L =




1 0 0
−3 1 0
2 2 1


 U =



−1 −3 −4
0 1 −22
0 0 a + 52




Part (b)

det(A) = det(L) det(U) = det(U) = −a− 52

so det(A) = 0 when a = −52

Part (c)

To solve LUx = b set Ux = y and solve Ly = b.




1 0 0
−3 1 0

2 2 1







y1

y2

y3


 =



−6
−3

9


 ,

row 1 ⇒ y1 = −6

row 2 ⇒ −3y1 + y2 = −3 ⇒ y2 = −21

row 3 ⇒ 2y1 + 2y2 + y3 = 9 ⇒ y3 = 63
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Then solve Ux = y



−1 −3 −4

0 1 −22
0 0 63







x1

x2

x3


 =




−6
−21

63


 ,

row 3 ⇒ x3 = 1

row 2 ⇒ x2 − 22x3 = −21 ⇒ x2 = 1

row 1 ⇒ −x1 − 3x2 − 4x3 = −6 ⇒ x1 = −1

So

x =




x1

x2

x3


 =



−1

1
1




(9) As in the example above, we record the steps in compact form.




3 −1 0

3 −1 1

0 2 1




R2 ↔ R3




3 −1 0

0 2 1

3 −1 1




R3 → R3 − (+1)R1




3 −1 0

0 2 1

GFED@ABC+1 0 1


 (R.E.F)

This gives

U =




3 −1 0
0 2 1
0 0 1


 , L =




1 0 0
0 1 0
1 0 1


, P =




1 0 0
0 0 1
0 1 0




Where PA = LU
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NOTE :

We have U = EPA where

E =




1 0 0
0 1 0
−1 0 1


, P =




1 0 0
0 0 1
0 1 0




so PA = E−1U where

E−1 =




1 0 0
0 1 0
1 0 1


 = L.
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