
DEPARTMENT OF MATHEMATICS

MATH2000
Green’s theorem, introduction to flux (solutions).

(1) Work done =
∫

C
F · dr where F = (y−xy)i+x2j and C is the rectangle in the x-y plane:
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Instead of evaluating
∫

C
=

∫
C1

+
∫

C2
+

∫
C3

+
∫

C4
, just use Green’s theorem in the plane:

∫

C

F · dr =

∫ ∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dxdy

with D = {(x, y) | 0 ≤ 2, 0 ≤ y ≤ 1}.
Now ∂F2

∂x
= 2x and ∂F1

∂y
= 1− x, so work done

=

∫ 1

0

∫ 2

0

(3x− 1)dxdy (Green′s Theorem)

=

∫ 1

0

[
3

2
x2 − x

]2

0

dy

=

∫ 1

0

4dy

= 4.
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(2) The curve C traverses the outside of the region D in the diagram below, in a counter-
clockwise direction:

X

Y

D
C

The region D can be expressed as

D = {(x, y) | 0 ≤ x ≤ 1, 3x ≤ y ≤ 3}.

With F1 = x2y2 and F2 = 4xy3, we have

∂F1

∂y
= 2x2y,

∂F2

∂x
= 4y3.

By Green’s theorem, we have

∫

C

x2y2 dx + 4xy3 dy =

∫ 1

0

∫ 3

3x

(4y3 − 2x2y)dy dx

=

∫ 1

0

[
y4 − x2y2

]3

3x
dx

=

∫ 1

0

(81− 9x2 − 72x4)dx

=

[
81x− 3x3 − 72

5
x5

]1

0

=
318

5
.
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(3) The diagram below describes the curve C, which actually consists of two curves, bounding
a circular region D with a hole. To be positively oriented, the curve must always have the
region D to the left. In other words, C traverses in a counterclockwise direction around
the circle of radius 2, and a clockwise direction over the circle of radius 1.

To be able to use Green’s theorem correctly, we divide D into two subregions (above and
below the x axis) by extending the boundaries along the positive and negative x axes
as indicated by the arrows. The line integrals along these parts of the curve will cancel,
because there will be two line itegrals over the same curves but in opposite directions.

X

Y

D

C

The region D can be expressed nicely using polar coordinates as

D = {(r, θ) | 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}.
We also have F1 = xe−2x, F2 = x4 + 2x2y2 so that

∂F1

∂y
= 0,

∂F2

∂x
= 4x3 + 4xy2.

We then have
∂F2

∂x
− ∂F1

∂y
= 4x3 + 4xy2 = 4x(x2 + y2).

Using polar coordinates (x = r cos θ, y = r sin θ), we can express this as

∂F2

∂x
− ∂F1

∂y
= 4r cos θ × r2.

By Green’s theorem (and using polar coordinates) we have
∫

C

xe−2x dx + (x4 + 2x2y2) dy =

∫ 2

1

∫ 2π

0

4r3 cos θ r dθ dr = 0, since

∫ 2π

0

cos θ dθ = 0.
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(4) The diagram below shows the path of integration: we shall choose to traverse the bound-
ary of the rectangle in a counterclockwise direction.

C1

C2

C3

C4
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y
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To calculate the net outward flux, we shall calculate the outwardly directed flux across
each of the four curves which make up the boundary of the rectangle. That is, we shall
calculate

net flux =

∫

C1

v · n1 dS +

∫

C2

v · n2 dS +

∫

C3

v · n3 dS +

∫

C4

v · n4 dS,

where ni is an outwardly directed unit normal vector to the line Ci.

For C1:

First parametrise the curve as

r(t) = 2i + (6− t)j (0 ≤ t ≤ 4) ⇒ r′(t) = −j,

so in this case r′(t) is a unit tangent vector. The outwardly pointing unit normal vector
is n1 = −i ( = (−j)× k). With this parametrisation,

v = (t− 6)i + 2j ⇒ v · n1 = 6− t.

As always, within the integral the infinitesimal element of arc can be expressed in terms
of the parametrisation as dS = |r′(t)|dt = dt in this case. The outwardly directed flux
across C1 is then ∫ 4

0

(6− t) dt = 16.
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For C2:

First parametrise the curve as

r(t) = ti + 2j (2 ≤ t ≤ 4) ⇒ r′(t) = i,

so in this case r′(t) is a unit tangent vector. The outwardly pointing unit normal vector
is n2 = −j ( = i× k). With this parametrisation,

v = −2i + tj ⇒ v · n2 = −t.

As always, within the integral the infinitesimal element of arc can be expressed in terms
of the parametrisation as dS = |r′(t)|dt = dt in this case. The outwardly directed flux
across C2 is then ∫ 4

2

(−t) dt = −6.

For C3:

First parametrise the curve as

r(t) = 4i + tj (2 ≤ t ≤ 6) ⇒ r′(t) = j,

so in this case r′(t) is a unit tangent vector. The outwardly pointing unit normal vector
is n3 = i ( = j × k). With this parametrisation,

v = −ti + 4j ⇒ v · n3 = −t.

As always, within the integral the infinitesimal element of arc can be expressed in terms
of the parametrisation as dS = |r′(t)|dt = dt in this case. The outwardly directed flux
across C3 is then ∫ 6

2

(−t) dt = −16.

For C4:

First parametrise the curve as

r(t) = (4− t)i + 6j (0 ≤ t ≤ 2) ⇒ r′(t) = −i,

so in this case r′(t) is a unit tangent vector. The outwardly pointing unit normal vector
is n4 = j ( = (−i)× k). With this parametrisation,

v = −6i + (4− t)j ⇒ v · n4 = 4− t.

As always, within the integral the infinitesimal element of arc can be expressed in terms
of the parametrisation as dS = |r′(t)|dt = dt in this case. The outwardly directed flux
across C4 is then ∫ 2

0

(4− t) dt = 6.

Therefore the net outward flux is 16 + (−6) + (−16) + 6 = 0.
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(5) The diagram below shows the path of integration: we shall choose to traverse the bound-
ary of the rectangle in a counterclockwise direction.

C1C2

C3

x

y

(1,0)

(0,1)

(−1,0)

To calculate the net outward flux, we shall calculate the outwardly directed flux across
each of the three curves which make up the boundary of the triangle. That is, we shall
calculate

net flux =

∫

C1

v · n1 dS +

∫

C2

v · n2 dS +

∫

C3

v · n3 dS,

where ni is an outwardly directed unit normal vector to the line Ci.

For C1:

Since this is part of the straight line with equation x + y = 1, we can first parametrise
the curve as

r(t) = (1− t)i + tj (0 ≤ t ≤ 1) ⇒ r′(t) = −i + j.

To work out n1, we need a unit tangent vector T 1 so we can then take n1 = T 1 × k.
Since r′(t) is a tangent vector, we take

T 1 =
r′(t)
|r′(t)| =

−i + j√
2

.

The outwardly pointing unit normal vector is then

n1 = T 1 × k =
1√
2

∣∣∣∣∣∣

i j k
−1 1 0
0 0 1

∣∣∣∣∣∣
=

i + j√
2

.

With this parametrisation,

v = i− (1− 2t + 2t2)j ⇒ v · n1 =
2t− 2t2√

2
.

As always, within the integral the infinitesimal element of arc can be expressed in terms
of the parametrisation as dS = |r′(t)|dt =

√
2 dt in this case. The outwardly directed

flux across C1 is then ∫ 1

0

(2t− 2t2)dt =
1

3
.
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For C2:

Since this is part of the straight line with equation y = 1 + x, we can first parametrise
the curve as

r(t) = −ti + (1− t)j (0 ≤ t ≤ 1) ⇒ r′(t) = −i− j.

To work out n2, we need a unit tangent vector T 2 so we can then take n2 = T 2 × k.
Since r′(t) is a tangent vector, we take

T 2 =
r′(t)
|r′(t)| =

−i− j√
2

.

The outwardly pointing unit normal vector is then

n2 = T 2 × k =
1√
2

∣∣∣∣∣∣

i j k
−1 −1 0
0 0 1

∣∣∣∣∣∣
=
−i + j√

2
.

With this parametrisation,

v = (1− 2t)i− (1− 2t + 2t2)j ⇒ v · n2 =
−2 + 4t− 2t2√

2
.

As always, within the integral the infinitesimal element of arc can be expressed in terms
of the parametrisation as dS = |r′(t)|dt =

√
2 dt in this case. The outwardly directed

flux across C2 is then ∫ 1

0

(−2 + 4t− 2t2)dt = −2

3
.

For C3:

Since this is part of the straight line with equation y = 0, we can first parametrise the
curve as

r(t) = (t− 1)i (0 ≤ t ≤ 2) ⇒ r′(t) = i,

so in this case r′(t) is a unit tangent vector. The outwardly pointing unit normal vector
is n3 = −j ( = i× k).

With this parametrisation,

v = (t− 1)i− (t2 − 2t + 1)j ⇒ v · n2 = t2 − 2t + 1.

As always, within the integral the infinitesimal element of arc can be expressed in terms
of the parametrisation as dS = |r′(t)|dt = dt in this case. The outwardly directed flux
across C3 is then ∫ 2

0

(t2 − 2t + 1)dt =
2

3
.

Therefore the net outward flux is
1

3
+

(
−2

3

)
+

2

3
=

1

3
.
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(6)

Referring to the figure

x

y

C2

C1

C3

C4

C

 D

Flux =

∮
αxî · n̂ds =

∫

C1

αxî · n̂1ds +

∫

C2

αxî · n̂2ds +

∫

C3

αxî · n̂3ds +

∫

C4

αxî · n̂4ds

Where n̂i is the outward unit normal to the line Ci.

Flux =

∫ 3

1

αxî · (−ĵ)dx +

∫ 5

2

3αî · (̂i)dy +

∫ 3

1

αxî · (ĵ)dx +

∫ 5

2

1αî · (−î)dy

= 0 + 3α

∫ 5

2

dy + 0− α

∫ 5

2

dy

= 9α− 3α = 6α

The dimensions are in m2/s

NOTE : This problem could also be solved using the flux form of Greens theorem.

∮
axî · n̂dl =

∫ ∫

D

∇ ·
(
αxî

)
dA =

∫ 3

1

∫ 5

2

αdydx = 6α
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(7)

x

(0,0) (1,0)

(1,2)
y

D

Curve C

∫

C

xydx + x2y3dy =

∫

C

F · dr

where F = (F1, F2) = (xy, x2y3) and C is the curve indicated in the diagram. Green’s
theorem in the plane is

∫

C

F · dr =

∫ ∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dxdy

where D is the area enclosed by C. In this case

D = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 2x}

F1 = xy =⇒ ∂F1

∂y
= x

F2 = x2y3 =⇒ ∂F2

∂x
= 2xy3

∂F2

∂x
− ∂F1

∂y
= 2xy3 − x
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∮
xydx + x2y3dy =

∫
(2xy3 − x)dA =

∫ 1

0

∫ 2x

0

(2xy3 − x)dydx

=

∫ 1

0

∣∣∣
2x

0

[
1

2
xy4 − xy

]
dx

=

∫ 1

0

8x5 − 2x2dx =
∣∣∣
1

0

[
8

6
x6 − 2

3
x3

]
=

4

3
− 2

3
=

2

3
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