DEPARTMENT OF MATHEMATICS

Revision solutions

(1) For this example we use partial fractions.

We can write
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(2) Making the substitution v = 2* means within the integral we can also make the substi-

tution du = 3x2dx. Therefore
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(3) Based on the trigonometric identity tan?
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0 + 1 = sec? 6, we make the substitution z =

tan 6 so that within the integral we also have dz = sec? df. Therefore
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(4) Once we factorise 4 — 2> = (2 + z)(2 — x) it should be clear that we can use partial
fractions. We have
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(5) This example is similar to the previous one, with 22 —9 = (z + 3)(z — 3), except we now

have
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(6) Note that ‘
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which suggests that the substitution u = cosx will be useful. In that case we have

du = — sin xdx within the integral so that
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(7) This integral involves a little trick. Recall integration by parts:
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where u and v are both functions of x. For this example we set v = 1 and v = Inz.

Therefore
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(8) It is worth remembering the identity cos?# = 1 + 1 cos26. We then have
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(9) Once again we use integration by parts (see (7) above), but this time we need to use it
more than once. We start with v’ = e * and v = z%
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Now we need integration by parts to evaluate the remaining integral. Set v’ = e™* and
v = x. We then have
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We make the substitution u = cosz, then du = — sin xdz inside the integral. We have
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When dealing with integrals in higher powers of trigonometric functions, we can use
identities to simplify the expressions. In this case, we can write

/Sin3 xdr = /sinx -sin? wdr = /Sin 2(1 — cos? x)dz.

We then make the substitution u = cosx (as in the previous example), so we also have
du = — sin xdz. In this case,
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= —cosx~|—§0053x+c.

This is another integration by parts (see (7) above). Setting v’ = e and v = = we have
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Notice that we can solve this integral easily after manipulating the integrand into a

workable form:
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We then have

We use the trig. substitution z = 4sint, so that dz = 4 costdt and
16 — 2° = 16 — 16sin® ¢ = 16 cos ¢.

The integral becomes
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