
DEPARTMENT OF MATHEMATICS

Revision solutions

(1) For this example we use partial fractions. We can write

1

(1− x)(2 + x)
=

A

1− x
+

B

2 + x

⇒ 1 = A(2 + x) + B(1− x)

⇒ 2A + B = 1 & A−B = 0

⇒ A = B =
1

3

⇒
∫

dx

(1− x)(2 + x)
=

1

3

∫
dx

1− x
+

1

3

∫
dx

2 + x

= −1

3
ln |1− x|+ 1

3
ln |2 + x|+ c.

(2) Making the substitution u = x3 means within the integral we can also make the substi-
tution du = 3x2dx. Therefore

∫
x2ex3

dx =
1

3

∫
eudu

=
1

3
eu + c

=
1

3
ex3

+ c.

(3) Based on the trigonometric identity tan2 θ + 1 = sec2 θ, we make the substitution x =
tan θ so that within the integral we also have dx = sec2 θdθ. Therefore

∫
dx

x2 + 1
=

∫
sec2 dθ

tan2 θ + 1

=

∫
sec2 θ

sec2 θ
dθ

=

∫
dθ

= θ + c

= arctan x + c.

(4) Once we factorise 4 − x2 = (2 + x)(2 − x) it should be clear that we can use partial
fractions. We have

1

(2 + x)(2− x)
=

A

2 + x
+

B

2− x

⇒ 1 = A(2− x) + B(2 + x)

⇒ 2A + 2B = 1 & B − A = 0

⇒ A = B =
1

4

⇒
∫

dx

(2 + x)(2− x)
=

1

4

∫
dx

2 + x
+

1

4

∫
dx

2− x

=
1

4
ln |2 + x| − 1

4
ln |2− x|+ c.



(5) This example is similar to the previous one, with x2− 9 = (x+3)(x− 3), except we now
have

1

(x + 3)(x− 3)
=

1
6

x− 3
−

1
6

x + 3
,

leading to

∫
dx

x2 − 9
=

1

6

∫
dx

x− 3
− 1

6

∫
dx

x + 3
=

1

6
ln |x− 3| − 1

6
ln |x + 3|+ c.

(6) Note that ∫
tan xdx =

∫
sin x

cos x
dx

which suggests that the substitution u = cos x will be useful. In that case we have
du = − sin xdx within the integral so that

∫
tan xdx =

∫
sin x

cos x
dx

= −
∫

du

u

= − ln |u|+ c

= − ln | cos x|+ c

= ln |(cos x)−1|+ c

= ln | sec x|+ c.

(7) This integral involves a little trick. Recall integration by parts:

∫
u′ · vdx = u · v −

∫
u · v′dx,

where u and v are both functions of x. For this example we set u′ = 1 and v = ln x.
Therefore

∫
ln xdx =

∫
1 · ln xdx

= x ln x−
∫

x ·
(

1

x

)
dx

= x ln x− x + c.

(8) It is worth remembering the identity cos2 θ = 1
2

+ 1
2
cos 2θ. We then have

∫
cos2 xdx =

1

2

∫
(1 + cos 2x)dx

=
x

2
+

1

4
sin 2x + c.

(9) Once again we use integration by parts (see (7) above), but this time we need to use it
more than once. We start with u′ = e−x and v = x2:

∫
x2e−xdx = −x2e−x −

∫
(2x)(−e−x)dx

= −x2e−x + 2

∫
xe−xdx.



Now we need integration by parts to evaluate the remaining integral. Set u′ = e−x and
v = x. We then have∫

x2e−xdx = −x2e−x + 2

(
−xe−x −

∫
(1)(−e−x)dx

)

= −x2e−x − 2xe−x + 2

∫
e−xdx

= −x2e−x − 2xe−x − 2e−x + c

(10) We make the substitution u = cos x, then du = − sin xdx inside the integral. We have
∫

cos2 x sin xdx = −
∫

u2du

= −1

3
u3 + c

= −1

3
cos3 x + c.

(11) When dealing with integrals in higher powers of trigonometric functions, we can use
identities to simplify the expressions. In this case, we can write

∫
sin3 xdx =

∫
sin x · sin2 xdx =

∫
sin x(1− cos2 x)dx.

We then make the substitution u = cos x (as in the previous example), so we also have
du = − sin xdx. In this case,

sin3 xdx = −
∫

(1− u2)du

= −(u− 1

3
u3) + c

= − cos x +
1

3
cos3 x + c.

(12) This is another integration by parts (see (7) above). Setting u′ = ex and v = x we have
∫

xexdx = xex −
∫

exdx = (x− 1)ex + c.

(13) Notice that we can solve this integral easily after manipulating the integrand into a
workable form:

2 + x

1 + x
=

1 + 1 + x

1 + x
=

1

1 + x
+

1 + x

1 + x
=

1

1 + x
+ 1.

We then have ∫
2 + x

1 + x
dx =

∫ (
1

1 + x
+ 1

)
dx

= ln |1 + x|+ x + c.

(14) We use the trig. substitution x = 4 sin t, so that dx = 4 cos tdt and

16− x2 = 16− 16 sin2 t = 16 cos2 t.

The integral becomes
∫

dx√
16− x2

=

∫
4 cos tdt

4 cos t
=

∫
dt = t + c = arcsin

(x

4

)
+ c.


