DEPARTMENT OF MATHEMATICS

MATH2000
Triple Integrals in Rectangular Coordinates solutions.
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(2) Region of integration is defined to lie above the region in the z-y plane bounded by
y=+z,y=0and z = 1:

Region of integration D in 3D is above this region in z-y plane and below surface z =
1+z+y:
D={(z,y,2)0<2<1,0<y<Vr, 0<z<1+z+y}
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The region of integration is:
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(4) The challenge here is to first work out the equations of the intersecting planes.
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Clearly 2 of the 4 intersecting planes are the coordinate planes z = 0 and z = 0. There
is also the plane y = 1. For the 4th, we can work out from the diagram the equations for
the 3 lines where the 4th plane intersects with the other 3 planes. They are:

(x=0,y=2)
(y=1x+2z=1)



(2=0,y=ux)

Combining these gives the equation of the plane = + z = y.

The region of integration can be expressed as

D={(z,y,2)[0<2z<1, 2<y<1 0<z<y—x}
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(5) The region of integration can be expressed as
{(z,9.2) [0<2<1, 0<y<a® 0<z<y}.

From this information you might be able to draw a diagram of the region and then write
down the other five integrals straight off. This is a very efficient way of doing it, but it is
certainly not easy.




A more straightforward and systematic approach is to swap the order of integration of
two variables at a time. This is equivalent to changing the order of a double integral for
each pair of variables.

I = /Ol/omg/oyf(x,y,z) dz dy dz (1)
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where D is the region in the z-y plane

Dy ={(z,y)|0 <z <1, 0<y<2?}

To change the order of x and y, we can also represent the region as

Di={xyl0<y<l, y<a<1i}

= I:/Ol/\;/oyfdzdmdy. (2)



Also from (1),
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where the double integral is over a region in a plane parallel to the y-z plane for any
x € [0,1]. Effectively we treat = as a constant. The region can be expressed as

D, ={(y,2)[0 <y <a* 0<z<y}

The region D, looks like this:

We can also express the region in the other order as

D, ={(y,2)|0<z<2? z2<y<az?}

= 1:/01/0x2/2x2fdydzdx (3)



From (2),
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where the double integral is over a region in a plane parallel to the z-z plane for any
y € [0,1]. So effectively we treat y as a constant:

D, ={(x,2)\/y<z <1, 0< 2 <y}

For any y satisfying 0 <y < 1, the region D, looks like this:

We can change order trivially in this case, so that

I:/Ol/oy/\/;fdxdzdy. (4)
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where Dy is the region in the z-z plane

From (3),

Dy={(z,2)[0<z <1, 0< 2<%}



The region D, looks like this:

D,

It can be expressed in the other order, from which we read the bounds of the new integral:

Dy ={(z,2)[0<2<1, Vz2<z <1}

N /01/\/15/;2fdyda:dz. (5)
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where Dj3 is the region in the y-z plane

Finally, from (4),

Ds={(y.2)0<y<1 0<z<y}

In the y-z plane, D3 looks like this:

D3




To swap the order of integration, we write

Dy={(y,)0<z2<1, 2<y<1}
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The six orders of integration are given by (1), (2), (3), (4), (5) and (6).
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