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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

PART A

Q A1. (a) Find the general solution of the system

y
∼

′(t) = Ay
∼

(t) , A =

−3
2
−1

2

−1
2
−3

2

 .

Question A1 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q A1. (a) Working space only

Question A1 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q A1. (b) Show that there are solutions that correspond to trajectories along the straight
lines y2 = y1 and y2 = −y1 in the y1y2-phase plane.

(c) Identify the type and stability of the equilibrium (critical) point at the origin.

Question A1 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q A1. (d) Determine the slopes of trajectories where they cross the lines y2 = −1
3
y1,

y2 = −3y1, y2 = 0 and y1 = 0. Determine the directions of trajectories where
they cross the lines y2 = 0 and y1 = 0. Use these results and those of Part (b)
to help sketch some trajectories.

Question A1 continued next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q A1. (d) Working space only

Question A2 see next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q A2. (a) Consider the system

y′1(t) = y1(t) + y2(t)2

y′2(t) = y2(t) + y1(t)2 .

Find all equilibrium (critical) points of the system in the y1y2 phase-plane.

Question A2 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q A2. (b) Determine the type and stability of the critical points by linearization.

Question A2 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q A2.

(c) Show very roughly the shape of trajectories in the phase-plane near the critical
points, with appropriate directions.

Question A2 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q A2.

(d) Check that y1(t) = y2(t) = −et/(1 + et) is an exact solution of the nonlinear
system of ODEs, and show the corresponding trajectory in the phase-plane for
−∞ < t <∞.

Question A3 see next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q A3. (a) Find the Inverse Laplace Transform of 1/((s+ 1)(s+ 2)) in two ways:

(i) using Partial Fractions

(ii) using the Convolution Theorem (see Table) with F (s) = 1/(s + 1) and
G(s) = 1/(s+ 2).

Question A3 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q A3.

(b) Use the First Shifting Theorem (see Table) to show that

L((t+ 2)2e3t) =
4s2 − 20s+ 26

(s− 3)3

Question A3 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q A3. (c) Use the Method of Laplace Transforms to solve

y′′(t) + 5y′(t) + 6y(t) = 2u(t− 1) , y(0) = 0 , y′(0) = 1 ,

where u(t) is Heaviside’s Step Function (see Table).

Question A3 continued next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q A3. (c) Working space only

Question B1 see next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

PART B

Q B1. (a) Show using integration by parts that∫
x cos(px) dx =

x

p
sin(px) +

1

p2
cos(px) + const. ,

∫
x sin(px) dx = −x

p
cos(px) +

1

p2
sin(px) + const. .

Question B1 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q B1. (b) Show that the Fourier Series corresponding to the function defined by

f(x) = αx/L , −L < x < 0 ; f(x) = βx/L , 0 < x < L ;

and f(x+ 2L) = f(x) , −∞ < x <∞ ,

where α and β are constants, is

(α− β)

(
−1

4
+

2

π2

∞∑
m=0

cos[(2m+ 1)πx/L]

(2m+ 1)2

)
− (α + β)

π

∞∑
n=1

(−1)n sin[nπx/L]

n
.

Question B1 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q B1. (b) Working space only

Question B1 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q B1. (c) Explain what happens when (i) α = β (ii) α = −β.

(d) By considering the values to which the series should converge at x = L and
x = L/2, deduce that

∞∑
m=0

1

(2m+ 1)2
=
π2

8
,

∞∑
m=0

(−1)m

2m+ 1
=
π

4
.

Question B1 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q B1. (d) Working space only

Question B2 see next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q B2. (a) You are given (no need to check!) that the function G(x− y, t) defined by

G(x− y, t) =
1√

4πc2t
e−(x−y)2/(4c2t)

satisfies the 1-dimensional Heat Equation:

Gt(x− y, t) = c2Gxx(x− y, t) , −∞ < x <∞ , t > 0 .

Show that u(x, t) defined by

u(x, t) =

∫ ∞
−∞

G(x− y, t)f(y) dy

satisfies the 1-dimensional Heat Equation for −∞ < x < ∞ and t > 0, and
also the initial condition

lim
t→0+

u(x, t) = f(x) , −∞ < x <∞ .

Question B2 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q B2.

(b) Show that in the case when f(x) = u0 (const.) for x > 0 and f(x) = u1

(const.) for x < 0, this gives

u(x, t) =
1

2
(u0 + u1) +

1

2
(u0 − u1) erf

(
x√
4c2t

)
,

where

erf(z) =
2√
π

∫ z

0

e−v
2

dv .

Question B2 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q B2. (b) Working space only

Question B3 see next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q B3. (a) A rod of iron of square cross-section occupies the region 0 < x < a, 0 < y < a,
and −∞ < z < ∞. The faces at x = 0 and x = a are thermally insulated,
while the face at y = 0 is maintained at temperature u = 0. On the face at
y = a, the steady temperature u(x, a) = f(x) is maintained, with f(x) a given
function for 0 < x < a. After a long time, the rod reaches a steady temperature
distribution u(x, y), for 0 < x < a, 0 < y < a. What PDE and BCs determine
the form of u(x, y)?

(b) Work carefully through Fourier’s Method of Separation of Variables and Su-
perposition to obtain the solution

u(x, y) = A0y +
∞∑
n=1

An cos(
nπx

a
) sinh(

nπy

a
)

where

A0 =
1

a2

∫ a

0

f(x) dx

An =
2

a sinh(nπ)

∫ a

0

f(x) cos(
nπx

a
) dx .

Question B3 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q B3. (b) Working space only

Question B3 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q B3. (b) Working space only

Question B3 continued on next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q B3. (b) Working space only

Question B3 continued next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Q B3. (c) Evaluate u(x, y) in the case that f(x) = u0 (const.). Can you see from the
symmetry of the situation why the solution is so simple in this case?

Table of Laplace Transforms see next page. TURN OVER
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2001 (continued)

Table of Laplace Transforms see next page. TURN OVER


