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= MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q1. (b) Find all the critical points for the following nonlinear system.
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= MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q 1 (b). Working space only
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q2. (a) If G(s) is the Laplace Transform of g(t), prove carefully that

dAG(s)
ds

is the Laplace Transform of —tg(
Hence, or otherwise, determine the inverse Laplace Transform
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q2. (b) Use Laplace Transforms to solve the following initial value problem.
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q 2 (b). Working space only
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q 3 (a). Use integration by parts to show that if p is a nonzero constant, then

1
/:1: cos(pz)dr = z sin(pz) + — cos(pz) + const. ,
b p

1
/a: sin(pz) dz = _Z cos(pz) + = sin(pz) + const. .
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q 3 (b). Show that the Fourier Series corresponding to the function defined by

f(z) = A(l + 1), -1<z<0; f(z) =B(1-1), 0<z<l1;
and flz +2) = f(z), —c0 <z <00, P‘Z} =1
where A and B are constants, is given by
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q 3 (b). Working space ° 7
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q 3 (c). To what value must the series (%) converge at z = 07 Use this result to deduce that
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q 3 (e). Describe and explain in a few words, with graphs, what happens to f(z) and to the
series (%) when (a) A= B and (b) A= —B.
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
. Second Semester Examination, November, 2006 (continued)

Q4 (a). If
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q 4 (a). Working space
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q 4 (b). A very long (semi-infinite) cylindrical bar of material with thermal diffusivity 2
lies along the positive z-axis. The sides of the bar are thermally insulated, and the
temperature inside the bar is a function only of z and of time ¢. At time ¢ = 0, the
bar is at a uniform temperature ug along its length. The face of the bar at z =0 1s
maintained for all ¢ > 0 at the constant value u;. Write down the partial differential
equation, boundary condition and initial condition that determine the temperature
distribution u(z,t) in the bar for ¢ > 0. Write down also the corresponding equations
for the function 4(z,t) = u(z,t) — uz.
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q 4 (c). Given the formulau(z,t) = [*. G(z—y,t)f(y) dy for the temperature distribution
that arises when u(z,0) = f(z) for —oo < z < 00, in a bar that occupies the whole
z-axis, deduce that the solution to the problem in Q 4(b) is

u(z,t) = ug + (uo — u) erf(\/;cz_t> , (%)

erf(z) = %/0. e dv.

where
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q 4 (c). Working space
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MATH?2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Q 4 (d). Show how a measurement of u,(0,T") at some time T > 0 can be used to estimate
T, if ¢* and ug — u; are known.
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MATH2100 — APPLIED MATHEMATICAL ANALYSIS
Second Semester Examination, November, 2006 (continued)

Table of Laplace Transforms

F(1) F(s)
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