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MATH2011 — ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS
Second Semester Examination, November, 2004 (continued)

(a). Show that the Fourier Series corresponding to the function defined by

fle)=a, -L<zg0; fl@)=8, 0<zglL;
and  f(z+2L) = f(z), —00 < 2 < 00,
where o and S are constanfs, is given by
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Question 1 continued on next page.
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MATH2011 — ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS
Second Semester Examination, November, 2004 (continued)

Q 1 (a). Working space only
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Question 1 continued on next page. TURN OVER
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MATH2011 — ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS
Second Semester Examination, November, 2004 (continued)

Q 1 (b). Briefly explain the value taken by the series (x) at z = 0.
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Q 1 (¢). By considering the value to which the series () must converge at z = L/2 deduce

that
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Question 1 continued on next page.
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MATH2011 — ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS
Second Semester Examination, November, 2004 (continued)

Q 1 (d). Describe and explain in a few words what happens to the series (x) when (a) o = f8
and (b) a = —-8.

(5 marks)

Question 2 see next page. TURN OVER
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MATH2011 — ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS
Second Semester Examination, November, 2004 (continued)

Q 2 (a). You are given (no need to check!) that the function G(z — y,t) defined by

1 270402
G €T — ,t — — e"(x_y) /(40 t)
( v VArcit
satisfies
Gt(a:—y,t)=chm(x—y,t), -0 <<, t>0.

Show that u(z,t) defined by

u(z,t) = /_00 Gz —y,t)f(y) dy

satisfies the 1-dimensional Heat Equation for —oo < 2 < oo and ¢ > 0, and also the
initial condition

tl_arau(m,t);f(x) 3 —00 <z <00,
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MATH2011 — ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS
Second Semester Examination, November, 2004 (continued)

Q 2 (a). Working space only
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Question 2 continued on next page. TURN OVER
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MATH2011 — ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS
Second Semester Examination, November, 2004 (continued)

Q 2 (b). A very long cylindrical iron bar, with unknown thermal diffusivity ¢, lies along the
positive z-axis. The sides of the bar and the end at z = 0 are thermally insulated,
and the temperature u inside the bar is a function only of z and of time ¢. The
temperature distribution in the bar at ¢ = 0 is given by

0, L<z<x

st = o (25) - (V) )

for £ > 0, t > 0, where

u(,0) = F(z) = { o (const) , 0<z<L

Deduce that

erf(z \/_/ e dv.
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MATH2011 — ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS
Second Semester Examination, November, 2004 (continued)

Q 2 (b). Working space only /
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Question 2 continued on next page. TURN OVER
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MATH2011 — ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS
Second Semester Examination, November, 2004 (continued)

Q 2 (c). Given that erf(0.5)~ 0.5, deduce that the thermal diffusivity ¢? is given approxi-

mately by

C2 = L2 / ti,
where t; is the time taken for the temperature at the face x = 0 to reach the value
Ug / 2.
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