1. Find two independent vectors for the solution space of the system of equations:

\[\begin{bmatrix} 2 & 0 & 1 & 0 \\ 3 & 6 & 9 & 5 \\ 1 & 4 & 7 & 2 \\ 0 & 6 & 9 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \]

2. Show that the only solutions of \(\mathbf{A} \mathbf{x} = \mathbf{0} \) are \(\mathbf{x} = \mathbf{0} \). (If \(\mathbf{A} \mathbf{x} = \mathbf{0} \) has only the zero solution, then \(\mathbf{A} \mathbf{x} = \mathbf{b} \) has a solution if and only if \(\mathbf{b} \) is in the column space of \(\mathbf{A} \).

3. Find the nullspace of \(\mathbf{A} \). Is \(\mathbf{A} \) onto?
(c) Find the rank of the matrix A and its transpose A^T.

There is no such thing as rank for a transposed matrix.

(d) Find the rank of the matrix A and its inverse A^{-1}.

The rank of A is $n - 0$, and the rank of A^{-1} is $n - 0$.

Find bases for each of the subspaces by:

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
2 & -1 & 0 & 0 & 0 \\
9 & 5 & 2 & 1 & 0 \\
-2 & -2 & 1 & 0 & 1 \\
\end{bmatrix} = \mathbf{0}
\]

Assuming that all bases are found, two cofactor forms:

\[
\begin{bmatrix}
-6 & -6 & -6 & -6 & -6 \\
-6 & -6 & -6 & -6 & -6 \\
2 & 2 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]

Where u_1, u_2, v_1, v_2 are the eigenvectors of the matrices A and A^T respectively.

13. Show that any vector in \mathbb{R}^n is a linear combination of n linearly independent vectors if n is greater than or equal to $\dim \mathbb{R}^n$.

14. Find a basis for the subspace of \mathbb{R}^n spanned by the given vectors.