MATH2300 Assignment Three

Due Friday 10th September at 5pm (Hand in to Room 67-448)

1. Let U be a vector space with basis $\beta = \{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$, and let V be a vector space with basis $\gamma = \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}\}$. Let $T: U \to V$ be the linear transformation defined by

$$T(\mathbf{u_1}) = \mathbf{v_1} + 2\mathbf{v_2} - \mathbf{v_3} - 2\mathbf{v_4}$$

 $T(\mathbf{u_2}) = -2\mathbf{v_1} + 5\mathbf{v_2} - 13\mathbf{v_3} - 2\mathbf{v_4}$
 $T(\mathbf{u_3}) = 2\mathbf{v_1} + \mathbf{v_2} + 3\mathbf{v_3} - 2\mathbf{v_4}$

- (a) Find the matrix of transformation relative to the bases β and γ , $[T]_{\beta}^{\gamma}$.
- (b) Use this matrix to find bases for the kernel and image of T. State the rank and nullity of T.
- 2. Let $T: P_2[\Re] \to P_2[\Re]$ be the mapping defined by

$$T(f(x)) = f'(x)g(x) + 2f(x)$$

where g(x) = 3 + x and f'(x) is the formal derivative of f(x). (That is, if $f = a_0 + a_1x + a_2x^2$, then $f'(x) = a_1 + 2a_2x$, where $a_0, a_1, a_2 \in \Re$). Let $S: P_2[\Re] \to \Re^3$ be the linear transformation defined by

$$S(a + bx + cx^{2}) = \begin{bmatrix} a+b \\ c \\ a-b \end{bmatrix}$$

where $a, b, c \in \Re$. Let $\beta = \{1, x, x^2\}$ and $\gamma = \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ be the standard bases for $P_2[\Re]$ and \Re^3 respectively.

- (a) Prove that T is a linear transformation.
- (b) Find $[S]^{\gamma}_{\beta}, [T]^{\beta}_{\beta}$ and $[S \circ T]^{\gamma}_{\beta}$ and verify that $[S \circ T]^{\gamma}_{\beta} = [S]^{\gamma}_{\beta}[T]^{\beta}_{\beta}$.
- 3. (a) Prove that for any positive integer k, if A and B are similar matrices, then A^k and B^k are also similar.
 - (b) Let A and B be $n \times n$ matrices with real entries. Prove that the relation "A is similar to B" is an equivalence relation on $M_{n \times n}(\Re)$. That is, the relation is reflexive, symmetric and transitive.
 - (c) If λ is an eigenvalue of A, prove that λ^2 is an eigenvalue of A^2 .

1

4. Let $A = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$

- (a) Find the eigenvalues of A and state the algebraic multiplicity of each eigenvalue
- (b) Find bases for the eigenspaces corresponding to each eigenvalue and state the geometric multiplicity of each eigenvalue. Explain why A is diagonalizable.
- (c) Find a non-singular matrix $P \in M_{3\times 3}(\Re)$ that diagonalizes A and determine $P^{-1}AP$.
- 5. Let

$$A = \left[\begin{array}{rrr} 1 & -4 & 0 \\ -4 & 3 & -4 \\ 0 & -4 & 5 \end{array} \right]$$

Find an orthogonal matrix P that diagonalizes A. Determine P^TAP .

- 6. (a) QUESTION 6(a) HAS BEEN REMOVED FROM THE ASSIGNMENT
 - (b) Evaluate A^m where

$$A = \left[\begin{array}{rrr} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{array} \right]$$