Problem Sheet One

1. Which of the following are linear equations in x_1, x_2 and x_3 ?

(a)
$$x_1 + 2x_2 + 7x_3 = 6$$

(b)
$$x_1x_3 + x_2 = 3$$

(a)
$$x_1 + 2x_2 + 7x_3 = 6$$

(b) $x_1x_3 + x_2 = 3$
(c) $x_1 + 3x_3 = -2x_2 + \frac{1}{5}$
(d) $x_1 = 3\sqrt{x_3} + x_3$

(d)
$$x_1 = 3\sqrt{x_3} + x_2^2$$

(e)
$$x_1 = x_2$$

(f)
$$x_1^2 + x_2^2 + 2x_3^2 = 3^2$$

2. For each of the following systems, classify them as non-linear or linear. Further classify those systems which are linear as non-homogenous or homogenous, and form the augmented matrix of the system.

(a)
$$x_1 - 2x_2 = 0$$

 $3x_1 + 4x_2 = -1$

(b)
$$x_1 - 3x_2 + x_3 = 0$$

 $5x_1 - 2x_2 - 3x_3 = 0$
 $-7x_1 + x_2 + 2x_3 = 0$

$$2x_1 - x_2 = 3$$

(d)
$$x_1 + x_2 + 2x_3 - x_3 = 1$$

 $-x_1 + 2x_2 - x_3 = 3$

(a)
$$x_1 - 2x_2 = 0$$

 $3x_1 + 4x_2 = -1$
 $2x_1 - x_2 = 3$
(b) $x_1 - 3x_2 + x_3 = 0$
 $-7x_1 + x_2 + 2x_3 = 0$
 $-5x_1 - 5x_2^2 - x_3 = 0$
 $3x_1 + x_2^2 + x_3 = 0$
(d) $x_1 + x_2 + x_3 = 1$
 $-x_1 + 2x_2 - x_3 = 3$

3. Using elementary row operations, convert the following matrices to reduced row-echelon form.

$$(a) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 4 \end{bmatrix} \quad (b) \begin{bmatrix} 0 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix} \quad (c) \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad (d) \begin{bmatrix} 2 & 1 & -1 \\ 0 & 3 & 1 \\ -4 & 0 & 0 \end{bmatrix}$$

$$(c) \left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{array} \right]$$

$$(d) \left[\begin{array}{rrr} 2 & 1 & -1 \\ 0 & 3 & 1 \\ -4 & 0 & 0 \end{array} \right]$$

4. Solve the following homogenous system by finding the reduced row-echelon form of the coefficient matrix:

$$3x_1 + x_2 + x_3 + x_4 = 0$$

$$5x_1 - x_2 + x_3 - x_4 = 0$$

5. Solve the following homogenous system by finding the reduced row-echelon form of the coefficient matrix:

- 6. Let $A \in M_{n \times n}(\Re)$. Prove the following statements.
 - (a) If $A^2 = 0$, A is singular.
 - (b) If $A^2 = A$ and $A \neq I_n$, A is singular.
- 7. Calculate A^9 , A^T and A^{-1} when

$$A = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 4 \end{array} \right]$$

Problem Sheet Two

1. Let $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}$ and $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_m}$ belong to a real vector space V. Let

$$U_1 = \operatorname{span}(\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m})$$

$$U_2 = \operatorname{span}(\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_m})$$

Prove that

$$U_1 + U_2 = \operatorname{span}(\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}, \mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_m})$$

2. If $\mathbf{u}, \mathbf{v}, \mathbf{w}$ belong to the real vector space V, prove that

$$\operatorname{span}(\mathbf{u} + \mathbf{v}, \mathbf{v} + \mathbf{w}, \mathbf{w} + \mathbf{u}) = \operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$$

3. U and V are subspaces of \Re^3 defined by

$$U = \{(x, y, z) \mid x + y + z = 0\}$$
 and $V = \{(x, y, z) \mid x - y - z = 0\}$

Find spanning families for U and V and prove that $U + V = \Re^3$.

- 4. Which of the following subsets of \Re^2 are subspaces of \Re^2 ?
 - (a) $\{(x,y) \mid x = 3y\}$
- (b) $\{(x,y) \mid x^2 = y^2\}$
- (c) $\{(x,y) \mid x+y=1\}$
- (d) $\{(x,y) \mid x \ge 0 \text{ and } y \ge 0\}$
- 5. Which of the following sets of vectors in \Re^3 are linearly independent?
 - (a) (2,-1,2),(3,0,1),(2,2,2)
 - (b) (3,1,1),(2,-1,5),(1,7,-17)
 - (c) (6,0,-1),(1,1,4)
 - (d) (1,3,3),(0,1,4),(5,6,3),(7,2,-1)
- 6. Which of the following sets of vectors in P_2 are linearly independent?
 - (a) $2 x + 4x^2$, $3 + 6x + 2x^2$, $2 + 10x 4x^2$
 - (b) $3 + x + x^2$, $2 x + 5x^2$, $4 3x^2$
 - (c) $6 x^2$, $1 + x + 4x^2$
 - (d) $1 + 3x + 3x^2$, $x + 4x^2$, $5 + 6x + 3x^2$, $7 + 2x x^2$
- 7. Let α , β and γ be distinct real numbers. Prove that the vectors $(1, \alpha, \alpha^2)$, $(1, \beta, \beta^2)$ and $(1, \gamma, \gamma^2)$ are linearly independent.
- 8. Let u_1, u_2, \ldots, u_n be a linearly independent family of vectors in V and let vectors $v_1, v_2, \ldots, v_m \in V$ be defined by

$$v_i = \sum_{j=1}^n a_{ij} u_j, \quad 1 \le i \le m$$

Prove that v_1, v_2, \ldots, v_m are linearly independent if and only if the rows of the matrix $A = [a_{ij}]$ are linearly independent.

Problem Sheet Three

- 1. Explain why the following sets of vectors are *not* bases for the indicated vector spaces. (Solve this problem by inspection).
 - (a) $\mathbf{u_1} = (1, 2), \mathbf{u_2} = (0, 3), \mathbf{u_1} = (2, 7) \text{ for } \Re^2$
 - (b) $\mathbf{u_1} = (1, 2, 1), \mathbf{u_2} = (0, 3, 2) \text{ for } \Re^3$
 - (c) $\mathbf{p_1} = 1 + x + x^2, \mathbf{p_2} = x 1 \text{ for } P_2$
- 2. Which of the following sets of vectors are bases for \Re^3 ?
 - (a) (1,0,0),(2,2,0),(3,3,3)
- (b) (3,1,-4),(2,5,6),(1,4,8)
- (c) (2,-3,1),(4,1,1),(0,-7,-1)
- (d) (1,6,4),(2,4,-1),(-1,2,5)
- 3. Which of the following sets of vectors are bases for P_2 ?
 - (a) $1 3x + 2x^2$, $1 + x + 4x^2$, 1 7x
 - (b) $4+6x+x^2$, $-1+4x+2x^2$, $5+2x-x^2$
 - (c) $1 + x + x^2$, $x + x^2$, x^2
 - (d) $-4 + x + 3x^2$, $6 + 5x + 2x^2$, $8 + 4x + x^2$
- 4. Show that the following set of vectors is a basis for $M_{2\times 2}(\Re)$.

$$\left[\begin{array}{cc} 3 & 6 \\ 3 & -6 \end{array}\right] \ , \ \left[\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right] \ , \ \left[\begin{array}{cc} 0 & -8 \\ -12 & -4 \end{array}\right] \ , \ \left[\begin{array}{cc} 1 & 0 \\ -1 & 2 \end{array}\right]$$

In Questions 5 and 6 determine the dimension of and a basis for the solution space of the homogeneous system.

- 5. $3x_1 + x_2 + 2x_3 = 0$ $4x_1 + 5x_3 = 0$
- 6. $3x_1 + x_2 + x_3 + x_4 = 0$ $5x_1 - x_2 + x_3 - x_4 = 0$
- 7. Determine bases for the following subspaces of \Re^3 .
 - (a) The plane 3x 2y + 5z = 0
 - (b) The plane x y = 0
 - (c) The line described by the parametric equations

$$x = t$$

$$y = -t - \infty < t < \infty$$

$$z = 4t$$

- 8. Determine the dimension of the subspace of P_3 consisting of all polynomials $a_0 + a_1x + a_2x^2 + a_3x^3$ for which $a_0 = 0$.
- 9. Let $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ be a basis for a vector space V. Show that $\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$ is also a basis, where $\mathbf{u_1} = \mathbf{v_1}$, $\mathbf{u_2} = \mathbf{v_1} + \mathbf{v_2}$ and $\mathbf{u_3} = \mathbf{v_1} + \mathbf{v_2} + \mathbf{v_3}$.

- 10. Find the coordinate vector of $\mathbf{v} = (7,4)^T$ relative to the basis $(3,2)^T$, $(1,1)^T$ of \Re^2 .
- 11. $\mathbf{v_1} = (1, 1, 1)^T, \mathbf{v_2} = (2, 3, 2)^T, \mathbf{v_3} = (1, 5, 4)^T$ form a basis β for \Re^3 . Vectors $\mathbf{u_1} = (1, 1, 0)^T, \mathbf{u_2} = (1, 2, 0)^T, \mathbf{u_3} = (1, 2, 1)^T$ form a basis γ for \Re^3 . Find the change of basis matrix $[P]_{\beta}^{\gamma}$. Use this matrix to find $[3\mathbf{v_1} + 2\mathbf{v_2} \mathbf{v_3}]_{\gamma}$.
- 12. Find an orthonormal basis for the subspace of \Re^4 spanned by

$$\mathbf{u_1} = (1, 1, 1, 1)^T, \ \mathbf{u_2} = (0, 1, 1, 1)^T, \ \mathbf{u_3} = (0, 0, 1, 1)^T$$

Extend this to an orthonormal basis for \Re^4 .

Problem Sheet Four

1. Find bases for the row space, the column space and the null space of the following matrices. Verify for each matrix that $\dim(R(A)) = \dim(C(A))$ and that $\operatorname{rank}((A)) + \operatorname{nullity}((A)) = n$.

$$\begin{bmatrix} 1 & -3 \\ 2 & -6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 6 \\ 0 & 0 & -8 \end{bmatrix} \begin{bmatrix} 1 & -3 & 2 & 2 & 1 \\ 0 & 3 & 6 & 0 & -2 \\ 2 & -3 & -2 & 4 & 4 \\ 3 & -3 & 6 & 6 & 3 \\ 5 & -3 & 10 & 10 & 5 \end{bmatrix}$$

- 2. Find a basis for the subspace of \Re^4 spanned by the given vectors
 - (a) (1,1,-4,-3),(2,0,2,-2),(2,-1,3,2)
 - (b) (-1,1,-2,0),(3,3,6,0),(9,0,0,3)
 - (c) (1,1,0,0),(0,0,1,1),(-2,0,2,2),(0,-3,0,3)
- 3. Find a basis for the subspace of P_2 spanned by the given vectors.
 - (a) $-1 + x 2x^2$, $3 + 3x + 6x^2$, 9
 - (b) 1+x, x^2 , $-2+2x^2$, -3x
 - (c) $1 + x 3x^2$, $2 + 2x 6x^2$, $3 + 3x 9x^2$
- 4. Find a basis for the subspace of $M_{2\times 2}(\Re)$ spanned by the vectors

$$\left[\begin{array}{cc} -1 & -1 \\ 4 & 3 \end{array}\right] , \left[\begin{array}{cc} 2 & 0 \\ 2 & -2 \end{array}\right] , \left[\begin{array}{cc} 2 & -1 \\ 3 & 2 \end{array}\right]$$

5. U and V are subspaces of \Re^5 where, $U = \operatorname{span}(\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3})$, $V = \operatorname{span}(\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3})$, where $u_1, u_2, u_3, v_1, v_2, v_3$ are the respective columns of the matrix A:

$$A = \begin{bmatrix} 1 & 1 & 2 & 1 & 2 & 1 \\ 3 & 4 & 9 & 6 & 8 & 3 \\ -3 & -1 & 0 & 2 & -1 & -1 \\ -1 & -2 & -5 & -2 & -6 & -5 \\ -4 & -2 & -2 & 3 & -5 & -6 \end{bmatrix}$$

Assuming that A has reduced row-echelon form

find bases for each of the subspaces U, V, U + V.

Problem Sheet Five

- 1. $T: \Re^2 \to \Re^2$ is a linear transformation which maps $(1,2)^T$ to $(-2,3)^T$ and $(1,-1)^T$ to $(5,2)^T$. Find $T(\mathbf{v})$ when $\mathbf{v}=(7,5)^T$.
- 2. Let U be a vector space with basis $\beta = \{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$. $T: U \to U$ is the linear transformation defined by

$$T(\mathbf{u_1}) = \mathbf{u_1} + \mathbf{u_2} + \mathbf{u_3}$$

$$T(\mathbf{u_2}) = \mathbf{u_1} - \mathbf{u_2} + \mathbf{u_3}$$

$$T(\mathbf{u_3}) = 2\mathbf{u_1} + 2\mathbf{u_3}$$

Find bases for Ker(T), Im(T). Also find rank(T) and nullity(T).

3. Let U be a vector space with basis $\beta = \{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$. $T: U \to U$ is the linear transformation defined by

$$T(\mathbf{u_1}) = \mathbf{u_3} \quad T(\mathbf{u_2}) = -\mathbf{u_3} \quad T(\mathbf{u_3}) = \mathbf{u_1} + \mathbf{u_2}$$

Find bases for Ker(T), Im(T). Also find rank(T) and nullity(T).

4. Suppose $V = M_{2\times 2}(\Re)$ and $\beta: E_{11}, E_{12}, E_{21}, E_{22}$ is the standard basis for V. Mappings $S, T: V \to V$ are defined by

$$T(A) = \frac{1}{2}(A - A^T), \ S(A) = \frac{1}{2}(A + A^T)$$

- (a) Prove that S and T are linear.
- (b) Find $[S]^{\beta}_{\beta}$ and $[T]^{\beta}_{\beta}$.
- (c) Find bases for Ker(S) and Im(S), Ker(T) and Im(T).
- (d) Prove that $S^2=S, T^2=T, ST=0$ and TS=0.
- (e) Prove that $S + T = I_V$, where S + T is the linear mapping defined by $(S + T)(\mathbf{v}) = S(\mathbf{v}) + T(\mathbf{v})$.
- 5. Let $\gamma: \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}$ be the standard basis of unit vectors for $V = \Re^3$ and let $\beta: \mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ be the basis of \Re^3 given by

$$\mathbf{v_1} = [1, 1, -1]^T, \ \mathbf{v_2} = [2, 1, 3]^T, \ \mathbf{v_3} = [0, 1, 1]^T$$

Find $[I_V]^{\gamma}_{\beta}$ and $[I_V]^{\beta}_{\gamma}$.

6. Let $T: P_4[\Re] \to P_4[\Re]$ be the linear transformation defined by

$$T(f(x)) = \frac{1}{2}(f(x) + f(-x)).$$

- (a) Prove that $T^2 = T$.
- (b) For the basis $\beta:1,x^2,x^4,x,x^3$ of $P_4[\Re]$, find $[T]^{\beta}_{\beta}$.
- 7. Let $\beta = \{\mathbf{u_1}, \mathbf{u_2}\}$ and $\gamma = \{\mathbf{v_1}, \mathbf{v_2}\}$ be two bases for \Re^2 , where

$$\mathbf{u_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{u_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \text{and} \quad \mathbf{v_1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \mathbf{v_2} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$$

Find $[T]^{\beta}_{\beta}$ and use Theorem 6.12 to calculate $[T]^{\gamma}_{\gamma}$ where $T:\Re^2\to\Re^2$ is defined by

$$T\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} x_1 - 2x_2 \\ -x_2 \end{array}\right]$$

Problem Sheet Six

1. For each of the following matrices, determine if they are diagonalizable. If so, find a matrix P that diagonalizes A, and determine $P^{-1}AP$.

$$\begin{bmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{bmatrix} \quad \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 2 & 3 \end{bmatrix}$$

2. Evaluate A^m where

(a)

$$A = \left[\begin{array}{cc} 1 & 0 \\ -1 & 2 \end{array} \right]$$

(b)

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 3 & 0 & -1 \end{array} \right]$$

3. Solve the following system of linear differential equations by using an appropriate change of variables.

$$x'_1 = 2x_1 + 3x_2 + 0x_3$$

$$x'_2 = 3x_1 + 0x_2 + -4x_3$$

$$x'_3 = 0x_1 + -4x_2 + 2x_3$$

4. Let

$$A = \left[\begin{array}{rrr} 5 & 2 & -2 \\ 2 & 5 & -2 \\ -2 & -2 & 5 \end{array} \right]$$

Find an orthogonal matrix P such that $P^TAP = D$ where D is diagonal.