
MATH2300 Graph Theory Problem Sheet 4

- 1. Prove that a maximum matching in the *n*-cube Q_n contains 2^{n-1} edges.
- 2. Show that for all positive integers n, it is possible to select an element from each of the (n-1)-element subsets of an n-set such that no element is selected more than once.
- 3. Find a maximum matching in the bipartite graph shown below.

- 4. Show that $C_n \times K_2$ has a 1-factorization for every $n \geq 3$.
- 5. One of K_7 , K_8 possesses a 2-factorization. Give a 2-factorization for this graph, and explain why the other graph does not possess one.
- 6. Determine the minimum size of a maximal matching in the cycle C_{3n}
- 7. Show that the graph $K_{2,n}$ is C_4 -decomposable for all even integers $n \geq 2$.
- 8. Is the graph $K_{2,6}$ C_6 -decomposable?

End of Problem Sheet 4