
CHAPTER 6

Rings & Fields

6.1. Rings

So far we have studied algebraic systems with a single binary operation. However many systems

have two operations: addition and multiplication. Such a system is called a ring. Thus a ring is an

algebraic generalization of Z, Mn(R), Z/nZ etc.

6.1.1 Definition A ring R is a triple (R,+, ·) satisfying

(a) (R,+) is an abelian group,

(b) (R, ·) is a semigroup,

(c) The distributive laws hold: for all a, b, c ∈ R

a · (b + c) = a · b + a · c
(a + b) · c = a · c + b · c.

We call + addition and · multiplication.

If we write this out in full detail, a ring is a non-empty set R, on which are defined two binary

operations + and · satisfying for all a, b, c ∈ R

(a) a + (b + c) = (a + b) + c

(b) There exists element 0R with a + 0R = a = 0R + a.

(c) For every a there exists −a with a + (−a) = 0R = (−a) + a

(d) a + b = b + a

(e) a(bc) = (ab)c

(f) a(b + c) = ab + ac, (a + b)c = ac + bc.

From now on if there is no confusion, we just write 0 instead of 0R.

6.1.2 Convention We give · higher precedence than +, so a · b+a · c means (a · b)+ (a · c) not a · (b+a) · c.
(This is another example of a prejudice that is heavily indoctrinated at an early age.)

Note that addition in a ring is always commutative, and there is always an additive identity, 0.

6.1.3 Definition A ring R is said to be commutative if multiplication is commutative, ie if ab = ba for

all a, b ∈ R. It has an identity if there is a multiplicative identity ie if there exists 1R ∈ R with

1Ra = a = a1R for all a ∈ R.

From now on we denote the identity by 1 instead of 1R if there is no risk of confusion.

Note: many authors require the existence of an identity in the definition of ring. There does not seem

to be universal agreement on this point.

6.1.4 Example

⋆ Z, Q, R are all commutative rings with identity.

⋆ N is not a ring. Additive inverses do not exist.

⋆ Z/nZ is a commutative ring with identity. See theorem 2.2.8. Note that Z/nZ is a finite ring,

with n elements.
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⋆ Mn(R) is a non-commutative ring, with identity I.

⋆ The smallest possible ring is {0}, called the zero ring , often denoted 0 (instead of {0}). It

satisfies the axioms for a commutative ring trivially (see below for another property of the 0

ring).

6.1.5 Example The set 2Z of even integers is a commutative ring without identity element.

Proof If a and b are even, so are a + b and ab, so 2Z is closed under addition and multiplication.

That is, addition and multiplication are binary operations on 2Z. Associativity and commutativity

of addition and multiplication, and distributivity all hold in Z and hence hold in the subset 2Z. Also

0 ∈ 2Z, and if n ∈ 2Z then −n ∈ 2Z. However there is no multiplicative identity: if e is the identity

then if ne = n so e = 1 6∈ 2Z.

6.1.6 Example Z[i] = {a + bi | a, b ∈ Z} the Gaussian integers is a commutative ring with identity.

Proof It is easy to check that addition and multiplication of two Gaussian integers gives another

Gaussian integer (exercise). Addition and multiplication are associative and commutative, since this

is true in C. Distributivity is also inherited from C. Finally 0 and 1 are in Z[i], and if z ∈ Z[i] then

−z ∈ Z[i].

We can also form the product of two rings.

6.1.7 Definition If R and S are rings, define1 the direct product of R and S to be the set R × S with

addition and multiplication given by

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)

(a1, b1) · (a2, b2) = (a1a2, b1b2)

It is easy to check that R × S is a ring (compare the proof of theorem 5.1.10). This ring is denoted

R × S. If R and S are commutative, so is R × S. If R and S have identities, so does R × S: the

identity will be (1R, 1S).

Another important example of a ring is a polynomial ring.

6.1.8 Definition Let R be a commutative ring. The polynomial ring with coefficients in R denoted R[x]

consists of all polynomials in x, with the usual addition and multiplication.

Here x is a variable, not an element of R. The ring R[y] consists of polynomials in the variable y etc.

Thus an element of R[x] looks like

p(x) = a0 + a1x + · · · + anxn

where the ai ∈ R. If q(x) = b0 + b1x + · · · + bmxm then p(x) + q(x) is the polynomial

(a0 + b0) + (a1 + b1)x + · · ·
This makes sense, since each ai, bi ∈ R so we can add them together.

Multiplication is a bit messy to write down, but is defined just as one would expect:

(a0 + a1x + · · · + anxn)(b0 + b1x + · · · + bmxm) = a0b0 + (a0b1 + a1b0)x + · · · + anbmxn+m

It is easy to check that R[x] is a commutative ring. If R has an identity, so does R[x] (namely the

constant polynomial 1).

6.1.9 Example Z/3Z[x] consists of all polynomials with coefficients in Z/3Z. For example,

p(x) = x2 + 2, q(x) = x2 + x + 1 ∈ Z/3Z[x].

1
R × S is also commonly called the direct sum of R and S, and denoted R ⊕ S. This usage conflicts with a more

general notion of sum, so ideally should be avoided.

80



CHAPTER 6. RINGS & FIELDS 2301 Notes

Then

p(x) + q(x) = 2x2 + x

and

p(x)q(x) = (x2 + 2)(x2 + x + 1) = x4 + x3 + 3x2 + 2x + 2 = x4 + x3 + 2x + 2.

We have already seen that Mn(R) is a ring. This does not rely on any special properties of the real

numbers. We could also form the ring of matrices with entries in C or entries in Z. All that we need

to add and multiply matrices is to be able to add and multiply the corresponding entries, so we can

take the entries to lie in any ring. The proofs that multiplication is associative, addition is associative

and commutative etc are exactly the same as the proofs that these properties hold in Mn(R).

6.1.10 Definition Let R be a ring. Let Mn(R) denote the set of n × n matrices with entries in R. Mn(R)

is a ring, under matrix multiplication and addition.

Mn(R) is not commutative even if R is (if n ≥ 2). It has an identity if R does, namely the identity

matrix I.

6.1.11 Example Let F be the set of all functions f : R → R (Example 4.1.3). Recall that if f , g ∈ F we

define f + g to be the function satisfying

(f + g)(x) = f(x) + g(x).

Similarly we define the product of f and g by

(f · g)(x) = f(x) · g(x).

We proved in Example 4.1.3 that F is an abelian group under +. Multiplication is easily seen to be

associative, and the distributive laws are easy to check. For example, to prove f · (g+h) = f ·g+f ·h
we must check that this holds for all possible inputs. But

f · (g + h)(x) = f(x) · (g + h)(x) Def ·
= f(x) ·

(

g(x) + h(x)
)

Def +

= f(x)g(x) + f(x)h(x) Distributivity in R

= (f · g)(x) + (f · h)(x) Def ·
= (f · g + f · h)(x) Def +

In fact, R is a commutative ring with identity.

81 Exercise Let R be the set of all functions f : R → R. Define addition as in the previous example, but

define multiplication to be composition of functions: fg is defined to be f ◦ g. Is R a ring? Explain.

82 Exercise An element x of a ring R is said to be nilpotent if x 6= 0 but xn = 0 for some n ≥ 1. Show

that R has no nilpotent elements iff x2 = 0 has only the solution x = 0 in R. Give an example of a

ring with nilpotent elements.

83 Exercise Let S be any set, and let P(S) be the power set of S, that is, the collection of all subsets of

S. Define + and · on P(S) by

A + B = (A ∪ B) \ (A ∩ B)

A · B = A ∩ B

Prove that P(S) is a commutative ring with identity.

6.2. Subrings

6.2.1 Definition Let R be a ring. A non-empty subset S ⊆ R is a subring if

(a) (S, +) is a subgroup of (R,+)

(b) S is closed under multiplication: s1, s2 ∈ S =⇒ s1 · s2 ∈ S.
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In other words, S must satisfy: S is closed under addition, 0 ∈ S, (x ∈ S =⇒ −x ∈ S), and

S is closed under multiplication. These properties ensure that S is a ring in its own right. (The

distributivity laws hold in S automatically since they hold in the larger set R.)

6.2.2 Example Z is a subring of Q, which is a subring of R which is a subring of R[x].

6.2.3 Example 2Z is a subring of Z.

6.2.4 Example Z/nZ is not a subring of Z. It is not even a subset of Z, and the addition and multiplication

on Z/nZ are different than the addition and multiplication on Z.

84 Exercise Show that nZ is a subring of Z. Prove that every subring of Z has this form for some n.

(Hint: pick n to be the smallest non-zero element of S . . . )

6.3. Basic Properties of Rings

A ring is a set with two binary operations, addition and multiplication. The operation of subtraction

is not part of the definition, but it is easy to define a subtraction operation as follows.

6.3.1 Definition Let R be a ring. We define a − b to be a + (−b). Here −b is the additive inverse of b.

In some ways this is a poor choice of notation. We use the same sign − to indicate the additive inverse,

and the binary operation of subtraction.2 We should clarify that the notation works as we expect it

will. The proofs of all these basic rules are very simple, although a bit notationally confusing:

6.3.2 Theorem Let R be a ring, and let a, b, c ∈ R. Then

(a) If a + b = a + c then b = c.

(b) a · 0 = 0 = 0 · a.

(c) a · (−b) = −(ab) = (−a) · b.
(d) −(−a) = a.

(e) −(a + b) = −a − b.

(f) −(a − b) = −a + b.

(g) (−a)(−b) = ab.

(h) If R has an identity, then (−1)a = −a.

Proof

(a) If a+b = a+c then add the additive inverse of a, (−a) to both sides. Then (−a)+a+b = (−a)+a+c

so 0 + b = 0 + c so b = c. Note: this is a group theoretic property in the group (R,+) and follows

from theorem 5.3.1.

(b) a · 0 = a · (0 + 0) 0 is the additive identity

So a · 0 + 0 = a · 0 + a · 0 Definition of 0 (lhs ), distributivity (rhs )

By (a), a · 0 = 0. Similarly, 0 · a + 0 = 0 · a = (0 + 0) · a = 0 · a + 0 · a so cancelling (using (a)) we get

0 · a = 0.

(c) We have to show that a · (−b) is the additive inverse of ab. That is, we must show a · (−b)+ab = 0

(+ is commutative, so then ab + a · (−b) = 0 also). But using the distributive property

a · (−b) + ab = a
(

(−b) + b
)

= a · 0 = 0

by (b). Similarly (−a)b + ab =
(

(−a) + a
)

b = 0 · b = 0.

(d) This is a group theoretic result (written additively). See theorem 5.3.1.

2This may account many people’s difficulties with operating with negative numbers: “minus times minus is plus;

the reason for this we shall not discuss”; see the next theorem.
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(e) We must show that −a− b is the additive inverse of (a + b), that is, we must show they add to 0.

Here −a − b stands for (−a) + (−b), so we need to check that a + b + (−a) + (−b) = 0. This is clear,

since + is commutative and a + (−a) = 0 and b + (−b) = 0.

The rest are left as exercises. �

85 Exercise Finish the Proof.

A ring can have two distinguished elements, 0 and 1. 0 is the additive identity, and 1 is the

multiplicative identity. Can 0 ever be equal to 1? Recall that we write 0 for the 0 ring (the set {0}).
6.3.3 Theorem Let R be a commutative ring with identity. Then 0 = 1 iff R = 0.

Proof =⇒ If 0 = 1 then for every a ∈ R, a = a · 1 = a · 0 = 0, so R consists only of the single

element 0.

⇐= If R = 0 then the only element of R is 0. So for every a in R, 0 · a = a = a · 0 (trivially), and

this means 0 is the multiplicative identity. �

6.4. Units

We have talked about addition, subtraction and multiplication in rings. What about division? We

can only divide under special circumstances. For example in Z we can divide 6 by 3 but not by 4

(6/4 6∈ Z). In Z we can divide with impunity only by ±1.

6.4.1 Definition Let R be a ring with identity. An element u ∈ R is a unit if it has an multiplicative

inverse. That is u is a unit iff there exists v ∈ R with uv = 1 = vu. We denote v by u−1 and call it

the inverse of u. The set of units of R is denoted R×.

If the inverse exists, it must be unique (theorem 4.3.2).

6.4.2 Example

⋆ Z× = {±1} (= µ2).

⋆ Q× = Q \ {0}, R× = R \ {0}.
⋆ (Z/nZ)× consists of the congruence classes [a] with gcd(a, n) = 1. This is a set with ϕ(n)

elements.

⋆ The units of Mn(R) are the invertible n × n matrices (those with determinant not 0).

6.4.3 Example R[x]× ≃ R×. That is, only non-zero constant polynomials are units.

Proof Suppose fg = 1. The degree of fg is the degree of f plus the degree of g, so 0 ≤ deg f+deg g =

deg fg = deg(1) = 0, so f and g are constant polynomials.

6.4.4 Theorem If R is a ring with identity, then R× is a group.

Proof If u and v are units, so is uv because (uv)−1 = v−1u−1 by theorem 4.3.5, so R× is closed

under multiplication. Multiplication is associative, so R× forms a semigroup. 1 ∈ R×, and if u ∈ R×

so is u−1 (because u−1 is invertible with inverse u again by theorem 4.3.5). �

6.4.5 Corollary This reproves that GLn(R) is a group inside the ring Mn(R) (See Example 5.1.2). �

86 Exercise Show that if u1u2 · · ·un = 1 in a ring then all of the ui are units.

87 Exercise Show that 0 ∈ R× iff R = 0. So if R is a non-trivial ring, the best we could hope for is that

R× = R \ {0}. We discuss such rings later.
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88 Exercise Show that (A × B)× = A× × B×. By induction,

(A1 × A2 × · · ·An)× = A×

1
× A×

2
× · · ·A×

n

89 Exercise Let Z[i] = {a + bi | a, b ∈ Z} ⊆ C. Prove that Z[i]× = ±i,±1.

[Hint: If zw = 1, take the complex modulus of each side. Now square. Now write z = a + bi,

w = c + di. The function a + bi 7→ a2 + b2 is called the Norm and is often useful in this ring.]

6.5. Homomorphisms

A ring homomorphism should respect both the additive and multiplicative structure of the ring.

6.5.1 Definition Let R and S be rings. A ring homomorphism f : R → S is a function satisfying

f(a + b) = f(a) + f(b)

f(ab) = f(a)f(b)

for all a, b ∈ R. The kernel of f is the set of elements mapped to 0:

ker f = {x ∈ R | f(x) = 0S}.
A ring isomorphism is a bijective ring homomorphism. We write R ≃ S and say that R and S are

isomorphic if there exists a ring isomorphism R → S.

If R ≃ S then R and S are structurally identical. The elements in S are just renamed versions of the

elements in R.

90 Exercise Let R, S, T be rings. Show that

(a) R ≃ R.

(b) R ≃ S =⇒ S ≃ R.

(c) R ≃ S, S ≃ T =⇒ R ≃ T .

Hint: modify the proof of theorem 5.11.3.

6.5.2 Example

⋆ The complex conjugation map C → C is a ring isomorphism.

Proof Denote the conjugate of z by z. Recall that z1 + z2 = z1 + z2 and z1z2 = z1 · z2,

so conjugation is a ring homomorphism. (These are easy to prove directly: let z1 = a + bi,

z2 = c + di and expand.)

If z1 = z2, let z1 = a + bi, z2 = c + di. Then a − bi = c − di so a = c, b = d so z1 = z2.

Thus conjugation is injective. Finally if m + ni ∈ C then m − ni = m + ni so conjugation is

surjective also. �

⋆ The determinant map det : Mn(R) → R is not a ring homomorphism because det(A + B) 6=
det(A) + det(B).

⋆ The function f : Z → 2Z sending x 7→ 2x is a group isomorphism (compare Example 5.11.9).

However it is not a ring isomorphism because f(xy) = 2xy but f(x)f(y) = (2x)(2y) = 4xy.

This means that as groups Z and 2Z are identical. But as rings, they are not. For example, 2Z

does not contain a ring identity (Example 6.1.5) while Z does.

91 Exercise Let f : Z/3Z → Z/6Z be defined by f(x) = 4x. Is f a well defined ring homomorphism? If

so, find its kernel and image.

92 Exercise Let R be a commutative ring with identity. Let R[x] denote the polynomial ring in the variable

x with coefficients in R and R[y] denote the polynomial ring with variable y with coefficients in R.

Prove that R[x] ≃ R[y]. (Don’t get confused—this is very easy.)
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93 Exercise Show that if gcd(m, n) = 1 then Z/mnZ ≃ Z/mZ × Z/nZ. Hint: we have already shown the

existence of a group isomorphism. Check that it preserves multiplication. This result is often called

the CRT. If we combine this with Exercise 88 we get a nice proof that ϕ is multiplicative. Fill in the

details.

6.6. Integral Domains & Fields

6.6.1 Definition Let R 6= 0 be a commutative ring with identity. A non-zero element a ∈ R is called a zero

divisor if there exists non-zero b ∈ A with ab = 0. If R has no zero divisors it is called an integral

domain.

(The 0 ring is usually not considered to be an integral domain.)

Intuitively, an integral domain is a lot like the integers.

6.6.2 Example

⋆ Z, Q, R are integral domains.

⋆ (The congruence classes of) 2 and 3 are zero divisors in Z/6Z, so Z/6Z is not an integral domain.

⋆ A subring of an integral domain is always an integral domain (the larger ring has no zero

divisors, so the smaller certainly does not).

⋆ Z × Z is not an integral domain: (1, 0) · (0, 1) = (0, 0) so (1, 0) and (0, 1) are zero divisors.

6.6.3 Theorem Let n ≥ 2. Then Z/nZ is an integral domain iff n is prime.

Proof

⇐= Let n = p be prime. Suppose [a] and [b] are zero divisors in Z/pZ, with 1 ≤ a, b < p. Then

ab ≡ 0 (mod p) so p | ab but then p | a or p | b by theorem 1.7.2. Contradiction. So there are no

zero divisors.

=⇒ If n is not prime then it has proper factors a, b with 1 < a, b < n and n = ab. So in Z/nZ,

[a], [b] 6= 0 but [a][b] = [ab] = [n] = [0]. �

In integral domains cancellation holds.

6.6.4 Theorem Let A be an integral domain. If ab = ac with a 6= 0 then b = c. That is, (multiplicative)

cancellation holds in A.

Proof If ab = ac then 0 = ab − ac = a(b − c). A product of two non-zero elements in an integral

domain is non-zero. Hence b − c = 0 so b = c. �

This result does not hold without the integral domain hypothesis.

6.6.5 Example In Z/6Z, 2 ·1 ≡ 2 ·4 but 1 6= 4. If we try the proof above, 0 ≡ 2 ·4−2 ·1 = 2 · (4−1) = 2 ·3
but this does not mean that 3 ≡ 0.

An even more special type of ring is a field.

6.6.6 Definition Let K 6= 0 be a commutative ring with identity. Then K is a field if every non-zero

element is a unit.

That is, in a field we can “divide” by everything except 0.

6.6.7 Example

⋆ Q, R, C are fields: if x is a non-zero element of one of these rings, then so is 1/x and x·(1/x) = 1

so x is a unit.
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⋆ Z and Z[i] are integral domains but not fields. For example, 2 is not a unit since 1/2 is not in

either ring.

6.6.8 Theorem

(a) Every field is an integral domain.

(b) Every finite integral domain is a field.

Proof

(a) Let K be a field. If ab = 0 with a 6= 0 then multiply each side by a−1 to get a−1ab = a−10 so

b = 0. Thus K has no zero divisors.

(b) Let A be a finite integral domain with n elements. Since A 6= 0 there exists a ∈ A \ {0}. Let

S = {ax | x ∈ A} ⊆ A.

If ax = ay then x = y by theorem 6.6.4. Thus S has exactly n elements. In particular it contains 1,

so ax = 1 for some x. Thus a is a unit. �

Z is an integral domain but not a field. Z/nZ is a field if n is prime. Otherwise it is not even an

integral domain.

6.6.9 Definition We sometimes denote Z/pZ by Fp and call it the finite field with p elements.

Are there any other finite fields besides Fp?

6.6.10 Theorem Let K be a finite field. Then K has pn elements for some prime p and n ≥ 1. Moreover

there exists exactly one finite field (up to isomorphism) of order pn for each p and n.

Proof Omitted. �

In general the unique finite field with q = pn elements is often denoted Fq. Finite fields are extremely

useful in cryptography, coding, combinatorics etc.

94 Exercise For each of the below, determine whether the given set is a ring. If it is, state whether the

ring is commutative, has identity, is an integral domain and is a field.

(a) nZ with the usual addition and multiplication.

(b) {a + b
√

2 | a, b ∈ Z}.
(c) {a + b

√
2 | a, b ∈ Q}.

95 Exercise Let R be a ring. Show that R is commutative iff a2 − b2 = (a − b)(a + b) for all a, b ∈ R.

96 Exercise Show that

(

1 1

0 0

)

is a zero divisor in the ring M2(Z/2Z).

97 Exercise Prove: If A is an integral domain, then A[x] is also an integral domain.

98 Exercise Suppose R and S are rings, and f : R → S is a non-zero homomorphism (that is, it is not

the case that f(x) = 0 for all x). Suppose R has an identity and S has no zero divisors. Show that

f(1R) = 1S .

99 Exercise Show that Q 6≃ R and R 6≃ C. Hint: if a polynomial has a root in K and K ≃ L, a

corresponding polynomial has a root in L.

6.7. Ideals

Ideals in ring theory play the same role that normal subgroups do in group theory. An ideal is a

special type of subring.
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Let R be a commutative ring and let I be an additive subgroup of (R,+). Then we may form the set

R/I of left cosets. Since (R,+) is abelian, I is automatically normal and R/I is a group. What do

we need for it to be a ring?

Recall the condition for cosets (written additively) to be equal (theorem 5.12.6):

a + I = b + I ⇐⇒ a − b ∈ I.

We would like to define multiplication of cosets. If a + I, b + I ∈ R/I we would like to define

(a + I)(b + I) = ab + I.

Does this make sense? Is multiplication well defined? If a1 + I = a2 + I, so a1 − a2 ∈ I and

b1 + I = b2 + I so b1 − b2 ∈ I then we need a1b1 + I = a2b2 + I: so we need a1b1 − a2b2 ∈ I.

Now a1b1 − a2b2 = a1b1 − a2b1 + a2b1 − a2b2 = (a1 − a2)b1 + a2(b1 − b2). We know that a1 − a2 and

b1 − b2 ∈ I. This motivates the following definition.

6.7.1 Definition An ideal I of a commutative ring R is a subgroup of (R,+) satisfying

∀a ∈ R ∀x ∈ I ax ∈ I and xa ∈ I.

If I is an ideal of R, we write I � R.

The quotient ring or factor ring R/I is the ring of all cosets or residue classes a + I, with a ∈ R.

Addition and multiplication in R/I are defined by

(a + I) + (b + I) = (a + b) + I

(a + I)(b + I) = ab + I.

A subring S of R is a subgroup of (R,+) that is closed under multiplication by elements in S. An

ideal I of (R,+) is a subgroup of (R,+) that is closed not just under multiplication by elements in

I, but under multiplication (on either side) by all elements in R.

6.7.2 Example If R is a ring, 0 and R are always ideals of R.

6.7.3 Example 3Z � Z.

Proof We have already seen that 3Z is a subgroup of Z (Example 5.12.4). We have to check that if

x ∈ 3Z and a is any integer then ax and xa ∈ 3Z. This is clear because if 3 | x then 3 | ax = xa.

The factor ring is Z/3Z. This has 3 cosets, And 1+3Z = {. . . ,−4,−1, 2, 5, . . .}, 2+3Z = {−5,−2, 1, 4, . . .},
and 0 + 3Z = {. . . ,−6,−3, 0, 3, 6 . . .} as we have already seen.

6.7.4 Example nZ � Z. The proof is a generalization of the previous example. The quotient ring is Z/nZ.

6.7.5 Example Let I be the set of all polynomials in Z[x] with 0 constant term. Then I � Z[x].

Proof 0 ∈ I, and if p(x), q(x) have no constant term, neither does p(x) − q(x). So I is a subgroup

of Z[x]. Finally if p(x) ∈ I and r(x) ∈ Z[x] then p(x) = p1x + p2x
2 + · · · + pnxn and r(x) =

r0 + r1x + · · · + rmxm then p(x)r(x) = p1r0x + · · · has no constant term, so p(x)r(x) ∈ I. �

6.7.6 Theorem Let R be a commutative ring. Let a ∈ R, and let 〈a〉 = {ab | b ∈ R}. Then 〈a〉 � R.

Proof 〈a〉 is non-empty. If ra, sa ∈ 〈a〉 then ra − sa = (r − s)a ∈ 〈a〉, so 〈a〉 is a subgroup. Finally

if ra ∈ 〈a〉 and t is any element of R then (ra)t = t(ra) = (tr)a ∈ 〈a〉, so 〈a〉 � R. �

For example in Z, nZ = 〈n〉. In the previous example, the ideal I � Z[x] is 〈x〉, the set of multiples of

x.

6.7.7 Definition Let R be a commutative ring. The ideal 〈a〉 is called the principal ideal generated by a.
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6.7. IDEALS 2301 Notes

6.7.8 Theorem Let R be a commutative ring with I � R. Then R/I is a well defined ring. The map

R → R/I given by a 7→ a + I is a surjective ring homomorphism.

Proof Exercise. We already know A/I is a well defined group, and the discussion above the definition

of ideal shows that multiplication is well defined. We also know a 7→ a+I gives a group homomorphism;

check that it respects multiplication. �

100 Exercise Find a subring of Z × Z that is not an ideal of Z × Z.

101 Exercise Let K be a field. Show that the only ideals of K are 0 and K.

102 Exercise An element a of a commutative ring R is said to be nilpotent if a 6= 0 but an = 0 for some

n ∈ N. Let N be the set of nilpotent elements of R, together with 0. Show that N � R.

103 Exercise Let R be a commutative ring and I � R. Let
√

I = {x ∈ R | xn ∈ I for some n ∈ N}. Show

that I ⊆
√

I � R.

104 Exercise Let R be a ring. Describe the factor rings R/R and R/0.

105 Exercise Give an example to show that a factor ring of an integral domain may be a field. Give

another example to show that a factor ring of an integral domain may not be an integral domain.

This completes the algebra section of the course.

“ . . . I thought Jem and I would get grown but there wasn’t much else left for us to learn, except

possibly algebra.”

To Kill A Mocking Bird.
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