
CHAPTER 2

Modular Arithmetic

In studying the integers we have seen that is useful to write a = qb + r. Often we can solve problems

by considering only the remainder, r. This throws away some of the information, but is useful because

there are only finitely many remainders to consider. The study of the properties of the system of

remainders is called modular arithmetic. It is an essential tool in number theory.

2.1. Definition of Z/nZ

In this section we give a careful treatment of the system called the integers modulo (or mod) n.

2.1.1 Definition Let a, b ∈ Z and let n ∈ N. We say 1that a is congruent to b modulo n , written

a ≡ b (mod n)

if n | (a − b).

2.1.2 Example

⋆ 23 ≡ 3 (mod 10) since 10 | (23 − 3).

⋆ 23 ≡ 7 (mod 8) since 8 | (23 − 7).

⋆ 10000 ≡ 4 (mod 7) since (10000 − 4) = 9996 = 1428 · 7.

Since any two integers are congruent mod 1, we usually require n ≥ 2 from now on.

Congruence modulo n generalizes the notion of divisibility, since

a ≡ 0 (mod n) ⇐⇒ n | a.

More generally, if a = qn + r then a ≡ r (mod n), since n | (a − r).

2.1.3 Theorem Let n > 1 and let a, b, c, d ∈ Z. Then

(a) If a = b then a ≡ b (mod n).

(b) a ≡ a (mod n).

(c) If a ≡ b (mod n) then b ≡ a (mod n).

(d) If a ≡ b (mod n) and b ≡ c (mod n) then a ≡ c (mod n).

(e) If a ≡ b (mod n) and c ≡ d (mod n) then a + c ≡ b + d (mod n) and ac ≡ bd (mod n).

Proof (a) a − b = 0 so n | (a − b).

(b) Follows from (a).

(c) If n | (a − b) then n | (b − a).

(d) If n | (a − b) and n | (b − c) then n | ((a − b) + (b − c)) so n | (a − c).

(e) Suppose n | (a − b) and n | (c − d). Then n | ((a − b) + (c − d)) so n | ((a + c) − (b + d)), that is,

a + c ≡ b + d (mod n).

1We are viewing ≡ (mod n) as a sort of weakened equality: given two integers, they either are or are not congruent

mod n. In computer science it is common to talk of the “mod n” operator, thinking of it as a function of one argument,

and writing a mod n = r to mean a ≡ r (mod n) with r ∈ {0, 1, . . . , n − 1}.

17



2.1. DEFINITION OF Z/NZ 2301 Notes

For multiplication, we may write a − b = sn for some s ∈ Z, so a = sn + b. Similarly c = tn + d. So

ac = (sn + b)(tn + d) = n(stn + sd + bt) + bd and n | (ac − bd). �

2.1.4 Example

⋆ 5 + 8 ≡ 1 (mod 12).

⋆ 5 · 8 = 40 ≡ 4 (mod 12).

⋆ 53 = 25 · 5 ≡ 1 · 5 ≡ 5 (mod 12).

Modular arithmetic is sometimes introduced using clocks. If we depart at 5 o’clock and our journey

takes 8 hours, we arrive at 1 o’clock. Only the remainder mod 12 is used for time in hours.

2.1.5 Example Let f be a polynomial with integer coefficients. Suppose a ≡ b (mod n). Then f(a) ≡ f(b)

(mod n).

Proof We make repeated use of Theorem 2.1.3. If a ≡ b then a2 ≡ b2, and so a3 ≡ b3 etc. So ak ≡ bk

for each k. So if f = ckx
k+· · ·+c1x+c0 then f(a) = cka

k+· · ·+c1a+c0 ≡ ckb
k+· · ·+c1b+c0 = f(b). �

2.1.6 Definition Let n ∈ N, n ≥ 2. Let a ∈ Z. The congruence class of a, denoted [a]n or [a] is the set of

all integers congruent to a mod n:

[a] = {b ∈ Z | b ≡ a (mod n)}.

Any element of [a] is called a representative for the congruence class [a].

We write [a] instead of [a]n unless we are working modulo two different bases.

Note that the congruence class [a] is a set of integers.

2.1.7 Example Let n = 2. Then

• [0] = {. . . ,−4,−2, 0, 2, 4, . . .}, the set of even integers.

• [1] = {. . . ,−3,−1, 1, 3, 5, . . .}, the set of odd integers.

Note that [0] = [2] = [4], [1] = [3] = [5] and so on, so there are just these two congruence classes. We

say that 0 is a representative for [0], 2 is another representative for [0] and so on. Each congruence

class has infinitely many representatives.

2.1.8 Example Let n = 4. Then

• [0] = {. . . ,−8,−4, 0, 4, 8, . . .}.

• [1] = {. . . ,−7,−3, 1, 5, 9, . . .}.

• [2] = {. . . ,−6,−2, 2, 6, 10, . . .}.

• [3] = {. . . ,−5,−1, 3, 7, 11, . . .}.

And [4] = [0], [5] = [1] and so on, so there are just these four congruence classes. Here 0 is a

representative for [0], 4 is another representative for [0] and so on.

2.1.9 Theorem a ≡ c (mod n) iff [a] = [c].

Proof =⇒ Suppose a ≡ c (mod n). Let b ∈ [a]. Then b ≡ a (mod n). But a ≡ c (mod n), so b ≡ c

(mod n) (Theorem 2.1.3). Hence b ∈ [c]. Since b ∈ [a] was arbitrary, [a] ⊆ [c]. A similar argument

shows that if b ∈ [c] then b ∈ [a], so [c] ⊆ [a]. Thus [a] = [c].

⇐= Suppose [a] = [c]. Since a ≡ a (mod n) we know that a ∈ [a] = [c], so a ≡ c (mod n). �

2.1.10 Corollary Any two congruence classes mod n are either equal or disjoint.

18



CHAPTER 2. MODULAR ARITHMETIC 2301 Notes

Proof Let [a] and [c] be two congruence classes. If they are disjoint there is nothing to prove. So

assume there is an element b in their intersection. Then by definition of congruence class, b ≡ a and

b ≡ c (mod n), so a ≡ c (mod n) so [a] = [c] by the previous theorem. �

This means that the congruence classes mod n partition the integers into disjoint blocks. We saw this

above for the integers mod 4: there are only four congruence classes, [0], [1], [2], [3]. This is true in

general.

2.1.11 Theorem There are exactly n congruence classes modulo n, namely [0], [1], . . . , [n − 1].

Proof We first show that these classes are all distinct. Suppose 0 ≤ r < s < n. Then 0 < s−r < n.

There is no integer multiple of n in the interval (0, n), so n ∤ (s − r), so r 6≡ s (mod n). Then by

Theorem 2.1.9, [r] 6= [s]. So no two of [0], [1], . . . [n − 1] are equal.

Next we show that every congruence class is equal to one of these listed. Let a ∈ Z. By the Division

Algorithm we may write a = qn + r with r = 0 or 1 or . . . or n − 1. Now a ≡ r (mod n) (since

a − r = qn). By Theorem 2.1.9, [a] = [r] with r = 0 or 1 or . . . or n − 1. �

2.1.12 Definition The set of congruence classes mod n is called the set of integers modulo n, and denoted

Z/nZ.

Many authors write Zn for Z/nZ, but this conflicts with other notation in number theory. (Some

people just write Z/n.)

Warning: the elements of Z/nZ are congruence classes, not integers. Each element is a set of integers.

For example, Z/4Z = {[0], [1], [2], [3]}. This is not a subset of Z.

Furthermore, according to Theorem 2.1.9 each congruence class has many different names. For ex-

ample [0] = [4] = [−12] in Z/4Z. It is perfectly correct to write Z/4Z = {[−12], [17], [10], [7]}:

[−12] = {. . . ,−16,−12,−8,−4, 0, 4, . . .} = [0]. This follows since −12 ≡ 0 (mod 4). Similarly 17 ≡ 1

(mod 4), so [17] = [1] etc.

However, we do have the following important function:

2.1.13 Definition Define a function π : Z → Z/nZ by

π(a) = [a].

The function π is called the reduction mod n function.

2.2. Defining Operations in Z/nZ

The integers mod n are clearly closely related to the integers Z. It is natural to wonder if we can add

and multiply in Z/nZ. We can, but it takes some care.

Suppose [a], [b] ∈ Z/nZ. How can we define the sum of these two classes? A natural idea is to try

the following:

(2.2.1) [a] ⊕ [b] = [a + b].

Here ⊕ is a new operation we are defining: an addition on the set Z/nZ. It is not the usual addition

+ of integers. In words: to add [a] and [b], find the class containing a + b.

2.2.1 Example In Z/5Z, [2] ⊕ [4] = [2 + 4] = [6] = [1]. [3] ⊕ [2] = [5] = [0].

However there is a serious difficulty. The elements of Z/nZ have many different names, and our

addition rule (equation 2.2.1) seems to depend on the particular name chosen. Do we get the same

answer, no matter which name we use?

2.2.2 Example In Z/5Z, [2] = [7] and [4] = [9]. Is [2] ⊕ [4] = [7] ⊕ [9]? Above, [2] ⊕ [4] = [1]. [7] ⊕ [9] =

[16] = [1], so we get the same answer in this case.
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This is always the case:

2.2.3 Theorem ⊕ is well defined on Z/nZ. That is, it does not depend on the particular names of the

congruence classes chosen in equation 2.2.1.

Proof Let [a], [c] ∈ Z/nZ. We must show that if [a] = [b] and [c] = [d] then [a] ⊕ [c] = [b] ⊕ [d].

Now [a] = [b] implies a ≡ b (mod n) (Theorem 2.1.9) and similarly [c] = [d] implies c ≡ d (mod n).

Thus a + c ≡ b + d (mod n) by Theorem 2.1.3, so [a + c] = [b + d]. Hence [a] ⊕ [c] = [b] ⊕ [d]. �

2.2.4 Example Here is the complete addition table mod 3:

⊕ [0] [1] [2]

[0] [0] [1] [2]

[1] [1] [2] [0]

[2] [2] [0] [1]

We can define multiplication mod n in a similar way.

2.2.5 Definition Define multiplication ⊙ on Z/nZ by

[a] ⊙ [b] = [ab].

2.2.6 Theorem ⊙ is well defined on Z/nZ.

Proof Exercise. We have to show that if [a] = [b] and [c] = [d] then [a]⊙ [c] = [b]⊙ [d]. The Theorems

needed are 2.1.9 and 2.1.3. �

2.2.7 Example Here is the complete multiplication table mod 3:

⊙ [0] [1] [2]

[0] [0] [0] [0]

[1] [0] [1] [2]

[2] [0] [2] [1]

In fact ⊕ and ⊙ in Z/nZ behave very much like addition and multiplication of integers:

2.2.8 Theorem For any classes [a], [b], [c] ∈ Z/nZ

(a) [a] ⊕ ([b] ⊕ [c]) = ([a] ⊕ [b]) ⊕ [c]

(b) [a] ⊕ [0] = [a] = [0] ⊕ [a].

(c) [a] ⊕ [−a] = [0] = [−a] ⊕ [a].

(d) [a] ⊕ [b] = [b] ⊕ [a].

(e) [a] ⊙ ([b] ⊙ [c]) = ([a] ⊙ [b]) ⊙ [c]

(f) [a] ⊙ [1] = [a] = [1] ⊙ [a].

(g) [a] ⊙ [b] = [b] ⊙ [a].

(h) [a] ⊙ ([b] ⊕ [c]) = ([a] ⊙ [b]) ⊕ ([a] ⊙ [c]).

(i) ([a] ⊕ [b]) ⊙ [c] = ([a] ⊙ [c]) ⊕ ([b] ⊙ [c]).

Proof Each property follows from the analogous property about integers. For example to prove (d):

[a] ⊕ [b] = [a + b] = [b + a] (since a + b = b + a for integers a and b), and [b + a] = [b] ⊕ [a].

The other properties are just as simple and are left as exercises.

qed

Not every algebraic property of the integers extends to Z/nZ.
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2.2.9 Example

⋆ In Z/6Z we have [2] ⊙ [3] = [6] = [0]. So two non-zero elements can multiply to give [0].

⋆ In Z/6Z, [2] ⊙ [1] = [2] = [2] ⊙ [4] but [1] 6= [4]. So cancellation fails: ab = ac does not imply

b = c (even if a 6= [0]).

We shall come back to these examples in the algebra section.

2.3. New notation for Z/nZ

So far we have been very careful to distinguish between integers and elements of Z/nZ (which are sets

of integers). We have defined addition and multiplication on Z/nZ, and seen that we have to check

carefully that these definitions make sense.

However, mathematicians are lazy, and often abuse notation. We adopt this common practice.

2.3.1 Definition From now on when working mod n, we write a to mean the congruence class [a]. We

write a + b instead of [a] ⊕ [b] and ab instead of [a] ⊙ [b]. We also write a − b for [a] ⊕ [−b]. We call

[0] the zero element .

Nonetheless we should always bear in mind the distinction between Z and Z/nZ. For example, mod

5 we have 1 = 6, which is not true in Z. We have 2 + 3 = 0 which is also false in Z. To mitigate this

confusion, we continue to write ≡ (mod n) where convenient.

If there is any occasion where the context does not make clear if we are working in Z or in Z/nZ, we

revert to the [a] notation.

Finally, we occasionally write a (mod n) to mean the representative r of the congruence class [a] with

0 ≤ r < n. This notation is common in computer science etc.

We give some further examples of calculations mod n. One great advantage of Z/nZ is that it is finite,

so we can simply test all possibilities.

2.3.2 Example For all n ∈ Z, n2 ≡ 0 or 1 (mod 4). (Compare Example 1.4.4).

Proof We know that Z/4Z = {0, 1, 2, 3}. So n2 ≡ 02, 12, 22 or 32. But 02 ≡ 0, 12 ≡ 1, 22 = 4 ≡ 0,

and 32 = 9 ≡ 1 (mod 4). �

2.3.3 Example For all n ∈ Z, 7 | n3 or 7 | n3 ± 1.

Proof The 7 congruences classes mod 7 may be represented by {−3,−2,−1, 0, 1, 2, 3} since 4 ≡ −3,

5 ≡ −2, 6 ≡ −1.

n −3 −2 −1 0 1 2 3

n3 −27 ≡ 1 −8 ≡ −1 −1 0 1 8 ≡ 1 27 ≡ −1

Thus n3 ≡ 0 or ±1 (mod 7) for every n. �

2.3.4 Example Prove that the equation x3 + 10000 = y3 has no solutions in integers x, y.

Proof If x3 + 10000 = y3 then x3 + 10000 ≡ y3 (mod 7) (by Theorem 2.1.3(1)). Since 10000 ≡ 4

(mod 7),

x3 + 4 ≡ y3 (mod 7).

But x3 ≡ −1, 0, or 1 (mod 7) by previous example, so x3 + 4 ≡ 3, 4 or 5 (mod 7), while y3 ≡ −1, 0,

or 1 (mod 7) contradiction. �

This example illustrates one of the uses of modular arithmetic. Modulo n there are only ever finitely

many possible cases, and we can (in principle) check them all.
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2.3.5 Example What is the last decimal digit of 32010?

Solution: We note that 31 ≡ 3 (mod 10), 32 ≡ 9, 33 ≡ 7 and 34 ≡ 1 (mod 10). So

32010 = 34·502+2 = (34)502 · 32 ≡ 1502 · 9 = 9 (mod 10).

So the last digit is 9. �

16 Exercise

(a) Prove that 6 | a(a2 + 11) for any integer a.

(b) Prove that if a and b are odd then a2 − b2 is a multiple of 8.

17 Exercise

Find all solutions of x2 + y2 = z2 with x, y, z ∈ N. (Pythagorean triples.)

(a) Recall from Exercise 11 that n is a square iff every exponent occurring in the factorization

of n is even. Using this, prove that if d2 | m2 then d | m.

(b) Hence prove that if gcd(u, v) = 1 and uv is a square then u and v are squares.

(c) Show that if d divides any two of x, y, z then it divides the third.

(d) Let d = gcd(x, y, z). Let X = x/d, Y = y/d, Z = z/d. Show that X2 + Y 2 = Z2 with

gcd(X, Y ) = gcd(X, Z) = gcd(Y, Z) = 1.

(e) Show that one of X and Y must be even and one must be odd, and that Z must be odd.

Hint: work mod 4.

(f) Without loss of generality, let Y be even, say Y = 2c and let X and Z be odd. Let u =

(X + Z)/2, v = (Z − X)/2. Show that uv = c2 and gcd(u, v) = 1.

(g) Conclude that u = a2 and v = b2 for some a, b ∈ Z.

(h) Hence show that X = a2 − b2, Y = 2ab and Z = a2 + b2.

(i) Obtain a Pythagorean triple with 2004 as one of the sides.

2.4. Powers in Z/nZ: Repeated Squaring

We can calculate powers in Z/nZ rapidly using repeated squaring.

2.4.1 Example Show that 11 | (332 + 2).

Solution: We repeatedly square mod 11.

32 ≡ 9

34 = (32)2 ≡ 92 ≡ 4 (mod 11)

38 = (34)2 ≡ 42 ≡ 5 (mod 11)

316 = (38)2 ≡ 52 ≡ 3 (mod 11)

332 = (316)2 ≡ 32 ≡ 9 (mod 11)

So 332 + 2 ≡ 0 (mod 11) so 11 | (332 + 2).

We calculate 332 using only 5 multiplications (squarings), instead of 32.

2.4.2 Example Find the last 2 decimal digits of 2100.

Solution: We work in Z/100Z.

22 ≡ 4

24 = (22)2 ≡ 42 ≡ 16 (mod 100)

28 = (24)2 ≡ 162 ≡ 56 (mod 100)

216 = (28)2 ≡ 562 ≡ 36 (mod 100)

232 = (216)2 ≡ 362 ≡ −4 (mod 100)

264 = (232)2 ≡ (−4)2 ≡ 16 (mod 100)
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Now 100 = 64 + 32 + 4, so

2100 = 264 · 232 · 24 ≡ 16 · (−4) · 16 ≡ 76 (mod 100).

So 2100 ≡ 76 (mod 100). This calculation required only 6 + 3 = 9 multiplications instead of 100.

In general to calculate aN (mod n) we need one or two multiplications for each power of 2 below N ,

for a total of at most 2 log2(N) multiplications or c log(N) multiplications, for some constant c.

2.4.3 Theorem It is possible to calculate aN (mod n) using only c log(N) multiplications, for some con-

stant c. �

This means it is feasible to calculate aN , even if the exponent N has thousands of digits.

2.4.4 Example Suppose a computer does 1 billion mod n multiplications per second. Suppose we want to

calculate

a100,000,000,000,000,000,000 (mod n).

So we want aN (mod n) with N = 1020. Multiplying a by itself 1020 times would take 1020 operations,

or about 3000 years. Using repeated squaring would take only about 2 log2(1020) operations or about

0.1 microseconds (millionths of a second).

2.4.5 Algorithm [Powers mod n] Given x ∈ Z, n, N ∈ N with n ≥ 2 this algorithm returns xN mod n.

The algorithm is recursive:

Power(x, n) =















Return x, if n = 1

Return Power
(

x, n
2

)

, if n is even

Return x · Power
(

x, (n−1)
2

)

, if n is odd

18 Exercise Calculate 2341 (mod 340).

19 Exercise Find the smallest integer larger than 11104 that is exactly divisible by 17.

2.5. Application: Diffie-Hellman Key Exchange

Many encryption schemes assume that the users know a secret key (usually a number). Anyone

possessing the key can decrypt messages.

How can Alice and Bob establish a secret key in the first place? Suppose they cannot meet in person.

Phones can be tapped, email read enroute etc.

E

��
�O
�O
�O
�O

A
&&

B
jj

Suppose an eavesdropper Eve can read every message that passes between A and B. It is still possible

for A and B to set up a secret key, right under E’s nose. The algorithm is based on the following

observation:

• Given a and N , it is easy to calculate aN (mod n).

• Given aN (mod n) and a it is very hard to find N .

2.5.1 Definition The task of finding N given aN (mod n) is called the discrete logarithm problem .
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Note: over R if aN = b then N = loga(b), hence the name. Of course the log function is not defined

mod n.

2.5.2 Example If 2N ≡ 3 (mod 11), find N .

Solution: We just have to try all the possibilities in turn.

N 1 2 3 4 5 6 7 8

2N 2 4 8 5 10 9 7 3

So N = 8.

If n and N are about 10100 in size then this is a hopeless task since potentially we would have to

check all 10100 possible N . . .

2.5.3 Algorithm [The Diffie-Hellman key exchange algorithm]

(a) A and B publicly choose a large prime number p and base a.

(b) A secretly chooses a number s, and sends as (mod p) to B.

(c) B secretly chooses a number t, and sends at (mod p) to A.

(d) A secretly calculates k = (at)s (mod p). B secretly calculates k = (as)t (mod p). Let k be

the secret key.

A and B never reveal s, t or k to anyone else.

E can see as and at (mod p) but cannot efficiently find the discrete logarithms s and t, so she cannot

find k = ast.

(E can always find k given enough time. But if p is chosen large enough: say p > 10100 then the

running time is expected to be trillions of trillions of years, so the key is effectively safe.)

2.5.4 Example Example: Suppose a = 2, p = 11. Suppose A choose s = 4 and B chooses t = 8. Calculate

the secret key.

Solution:

• A sends 24 ≡ 5 (mod 11) to B.

• B sends 28 ≡ 3 (mod 11) to A.

• A receives 3 from B and calculates k = 3s = 34 ≡ 4 (mod 11).

• B receives 5 from A and calculates k = 5t = 58 ≡ 4 (mod 11).

• This establishes the secret key k = 4 for A and B to use.

The eavesdropper E sees 5 ≡ 2s and 3 ≡ 2t go by, but she is not able to calculate s and t quickly. So

she cannot find k.

(Of course in this example the numbers are so small that E can easily find s and t by trial and error.

In practice s and t would be at least 100 digits long.)

2.6. Inverses in Z/nZ

We have seen how to add, subtract and multiply mod n. What about division? Since dividing is the

same as multiplying by the inverse (reciprocal), we need to investigate the existence of inverses mod

n.

2.6.1 Definition Let a ∈ Z/nZ. A solution x ∈ Z/nZ of the equation

ax ≡ 1 (mod n)

is called an inverse of a mod n, and denoted a−1.
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2.6.2 Example

⋆ 3 · 4 ≡ 1 (mod 11), so 4 is an inverse of 3 mod 11.

⋆ 5 · 5 ≡ 1 (mod 12) so 5 is its own inverse, mod 12.

⋆ 2x ≡ 1 (mod 10) has no solution. Proof If 2x ≡ 1 (mod 10) then 10 | (2x − 1). But 2x − 1 is

odd, so is not divisible by 10. So 2 is not invertible mod 10.

Which classes are invertible, mod n? The answer is those a with gcd(a, n) = 1. However, we have to

be careful that our abuse of notation does not lead us astray.

2.6.3 Theorem If [a] = [c] in Z/nZ then gcd(a, n) = gcd(c, n).

Proof If [a] = [c] then a ≡ c (mod n) by Theorem 2.1.9. Let a − c = qn, for some integer q, so

a = qn + c. Then gcd(a, n) = gcd(c, n) by Theorem 1.5.1. �

So the statement gcd(a, n) = 1 makes sense for congruence classes mod n.

2.6.4 Theorem a is invertible mod n iff gcd(a, n) = 1.

Proof By definition, a is invertible mod n iff there exists an integer x with ax ≡ 1 (mod n). This is

true iff there also exists an integer y with

ax + ny = 1.

But this equation is solvable in x and y iff gcd(a, n) = 1, by Theorem 1.6.5. �

Note: this is an example of an iff proof where we can do both directions at once, since each step is a

statement P ⇐⇒ Q.

2.6.5 Corollary Let p be a prime number. Then every non-zero element of Z/pZ is invertible.

Proof If a ∈ Z/pZ is non-zero then a 6≡ 0 (mod p), so p ∤ a. Since the only factors of p are 1 and p,

this means gcd(a, p) = 1, and a is invertible. �

This says that we can “divide by” any non-zero element in Z/pZ. In this respect Z/pZ is similar to

the real numbers. We shall discuss this further later in the course.

2.6.6 Example Which numbers are invertible mod 12?

Solution: The classes mod 12 are 0, 1, . . . , 11. A class a is invertible mod 12 iff gcd(a, 12) = 1 by

Theorem 2.6.4. Testing in turn, gcd(0, 12) = 12 > 1, gcd(2, 12) = 2 > 1, gcd(3, 12) > 1 etc. So a is

invertible mod 12 iff a ≡ 1, 5, 7, 11 (mod 12). Thus there are 4 invertible elements mod 12.

2.6.7 Theorem Let n ∈ N, n ≥ 2, and let a ∈ Z.

(a) If a is invertible, then its inverse is unique mod n.

(b) If a is invertible so is a−1, and (a−1)−1 ≡ a.

Proof (a Suppose b and c are both inverses of a mod n. Then ab ≡ ac ≡ 1 (mod n). So a(b− c) ≡ 0

(mod n) which says that n | a(b − c). Now if a is invertible, gcd(n, a) = 1 by Theorem 2.6.4, so

n | (b − c) by Theorem 1.7.1. Thus b ≡ c (mod n).

(b) If a is invertible then aa−1 ≡ a−1a ≡ 1 (mod n). This says that a is the inverse of a−1. �

This result means we can talk of the inverse of a, not just an inverse.

2.6.8 Theorem Let n ∈ N, n ≥ 2, and let a, b ∈ Z. If gcd(a, n) = 1 then the congruence equation

ax ≡ b (mod n)

has a unique solution x mod n.

Proof Take x = a−1b. Then ax = aa−1b ≡ 1 · b = b (mod n), so the equation has a solution.
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If x1 and x2 are two solutions then ax1 ≡ ax2, so multiplying by a−1 on each side, x1 ≡ x2, so the

solution is unique. �

As we have seen, ax ≡ b (mod n) may not be solvable if gcd(a, n) 6= 1. Or it may be solvable with

more than one solution:

2.6.9 Example The equation 3x ≡ 0 (mod 6) has solutions x ≡ 0, 2 or 4 (mod 6). Note that ax1 ≡ ax2

does not imply x1 ≡ x2 in this case.

2.6.10 Theorem a−1ak ≡ ak−1 (mod n). This motivates the negative power notation for inverses.

Proof Exercise. �

20 Exercise Prove theorem 2.6.10.

How do we actually calculate inverses mod n? Let n ∈ N with n ≥ 2 and let a ∈ Z with gcd(a, n) = 1.

Then a is invertible, with a unique inverse mod n (Theorems 2.6.4, 2.6.7). To calculate a−1, we apply

Theorem 1.6.5 to write

nx + ay = 1

for some integers x, y. Reducing this equation mod n,

ay ≡ 1 (mod n)

so y is the desired a−1. (The value of x is irrelevant.)

2.6.11 Algorithm [Inverses Mod n] To calculate a−1 mod n, find x and y with nx + ay = 1, using the

Extended Euclidean Algorithm. Then y ≡ a−1 (mod n).

2.6.12 Example Calculate 11−1 (mod 80).

Solution: We want to write 80x + 11y = 1.

q r x y

80 1 0

7 11 0 1

3 3 1 −7

1 2 −3 22

2 1 4 −29

0

So 80 · (4) + 11 · (−29) = 1, so 1 ≡ (−29) · 11 (mod 80), so 11−1 ≡ −29 ≡ 51 (mod 80).

Check: 11 · 51 = 561 = 7 · 80 + 1 ≡ 1 (mod 80). (Note: there was actually no need for the x column

in this calculation.)

This may seem like quite a lot of calculation, but in fact it is extremely efficient, even for very large

numbers.

2.6.13 Example Solve the congruence equation 11x ≡ 4 (mod 80).

Solution: If 11x ≡ 4 (mod 80) then x ≡ 11−1 · 4 ≡ 51 · 4 ≡ 44 (mod 80). Check: 11 · 44 = 484 ≡ 4

(mod 80).

21 Exercise Calculate 14−1 (mod 23). Hence solve the congruence 14x ≡ 11 (mod 23).

2.7. The Euler ϕ Function

Recall that an integer a is invertible mod n iff gcd(a, n) = 1.
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2.7.1 Definition Define a function ϕ : N → N by

ϕ(n) = The number of a with 1 ≤ a ≤ n and gcd(a, n) = 1.

This is called the Euler ϕ function . Equivalently, ϕ(n) is the number of invertible elements modulo

n.

2.7.2 Example The numbers a with 1 ≤ a ≤ 12 and a relatively prime to 12 are 1, 5, 7 and 11, so

ϕ(12) = 4. Note that 1, 5, 7, 11 are exactly the invertible elements modulo 12 (Example 2.6.6).

n Invertible elements mod n ϕ(n)

2 1 1

3 1, 2 2

4 1, 3 2

5 1, 2, 3, 4 4

6 1, 5 2

7 1, 2, 3, 4, 5, 6 6

8 1, 3, 5, 7 4

9 1, 2, 4, 5, 7, 8 6

10 1, 3, 7, 9 4

12 1, 5, 7, 11 4

2.7.3 Theorem Let p be a prime number and k ∈ N. Then

ϕ(pk) = pk−1(p − 1).

Proof ϕ(pk) = pk minus the number of a with 1 ≤ a ≤ pk and gcd(a, pk) > 1.

Now gcd(a, pk) > 1 implies a and pk share a common factor, hence a common prime factor, which

must be p. Conversely if p | a then gcd(a, pk) > 1. So the numbers with gcd(a, pk) > 1 are precisely

the multiples of p, and there are pk/p = pk−1 of these in the specified range. So ϕ(pk) = pk−pk−1. �

2.7.4 Theorem If gcd(m, n) = 1 then ϕ(mn) = ϕ(m)ϕ(n).

Proof Deferred until we develop some more algebra. �

Warning: Theorem 2.7.4 is false without the gcd assumption: ϕ(mn) 6= ϕ(m)ϕ(n) in general. For

example ϕ(9) = 32 − 3 = 6 6= ϕ(3)ϕ(3) = 4.

Theorems 2.7.3 and 2.7.4 gives us a formula for calculating ϕ(n) for any n. If n = pa1

1 · · · pak

k where

the pi are distinct primes then

ϕ(n) = ϕ(pa1

1 )ϕ(pa2

2 ) · · ·ϕ(pak

k )

= (pa1−1
1 )(p1 − 1)(pa2−1

2 )(p2 − 1) · · · (pak−1
k )(pk − 1)

2.7.5 Example Calculate ϕ(540).

Solution:

540 = 22 · 33 · 5

ϕ(540) = ϕ(22)ϕ(33)ϕ(5)

= 2(2 − 1)32(3 − 1)(5 − 1) = 144

22 Exercise Calculate ϕ(n) for 1 ≤ n ≤ 20. Calculate ϕ(2010).
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23 Exercise Prove that ϕ(n) is even for all n ≥ 3. Prove that ϕ(n) = 14 has no solution, and 14 is the

smallest even natural number with this property. Find all n with ϕ(n) = 6.

24 Exercise Show that ϕ(n2) = nϕ(n). Show that if m | n then ϕ(m) | ϕ(n).

25 Exercise Show that

ϕ(n) = n
∏

p|n

(1 −
1

p
).

where p is prime and
∏

denotes the product.

2.8. The Chinese Remainder Theorem

We have seen how to solve linear congruences ax ≡ b (mod m). What about simultaneous systems of

congruences? Consider the following problem. Let m1, . . . ,mn ∈ N, and let ai ∈ Z with 1 ≤ i ≤ n.

Can we find an integer x that simultaneously satisfies

x ≡ ai (mod mi), 1 ≤ i ≤ n?

2.8.1 Example The system

x ≡ 0 (mod 2)

x ≡ 1 (mod 2)

clearly is inconsistent. No integer x can be both 0 and 1 mod 2.

2.8.2 Example The system

x ≡ 4 (mod 7)

x ≡ 9 (mod 11)

x ≡ 3 (mod 13)

is solvable: x = 900 is a solution.

A condition that guarantees consistency of a simultaneous system is that the moduli be relatively

prime in pairs. (That is, no two of them share a factor.)

2.8.3 Theorem [Chinese Remainder Theorem] Let m1, . . . ,mn be pairwise relatively prime positive

integers. Let ai ∈ Z, 1 ≤ i ≤ n. Then any simultaneous system of congruences

x ≡ ai (mod mi) i = 1, 2, . . . n

is solvable. Moreover the solution is unique modulo m1m2 · · ·mn.

Proof We give a constructive proof. The idea is to find a number e1 that is 0 mod m2, m3, . . . ,

mn but e1 ≡ a1 (mod m1). Similarly find an e2 that is 0 mod m1, m3, m4 . . . , mn but is a2 mod m2.

Etc. The desired x will then be e1 + e2 + · · · + en. It is easy to find a number that is 0 mod mi for

i = 2, 3, . . .. Just take m2m3 · · ·mn. This will not be 0 mod m1 (see below) so we can scale it to make

it a1, by first multiplying by its inverse mod m1 and then multiplying by a1.

The details are as follows: Let

M =
∏

j

mj Mi =
∏

j 6=i

mj = M/mi.

Then gcd(mi, Mi) = 1 because Mi is a product of numbers relatively prime to mi (theorem 1.8.4). So

let Ni be an integer with

MiNi ≡ 1 (mod mi).

Finally let

x =
∑

aiMiNi.
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If we reduce x mod mi, every term in the sum is 0 except the ith because mi divides every other Mj .

So x ≡ aiMiNi ≡ ai · 1 = ai (mod mi) as required. This proves existence.

If y is another solution of the system then x− y ≡ 0 (mod mi) for each i, so mi | (x− y). But the mi

are relatively prime, so m1 · · ·mn | (x − y) by Theorem 1.7.6, so x ≡ y (mod m1 · · ·mn). �

2.8.4 Example Solve the system
x ≡ 4 (mod 7)

x ≡ 9 (mod 11)

x ≡ 3 (mod 13)

Solution: m1 = 7, m2 = 11, m3 = 13.

M1 = 11 · 13, M2 = 7 · 13, M3 = 7 · 11.

Then

M1 ≡ 3 (mod 7), M2 ≡ 3 (mod 11), M3 ≡ −1 (mod 13).

Thus we can take

N1 = 5, N2 = 4, N3 ≡ −1 (mod 13).

So
x = a1M1N1 + a2M2N2 + a3M3N3

= 4 · (11 · 13) · 5 + 9 · (7 · 13) · 4 + 3 · (7 · 11) · (−1)

= 5905

≡ 900 (mod 7 · 11 · 13).

According to legend, soldiers at drill in China used to line up in groups of various sizes. Suppose they

line up in groups of 7. The number of left over (remaining) soldiers could then easily be counted.

Next they could line up in 11’s and then in 13’s. If the remainders were 4, 9, 3 respectively, then

the total number n of soldiers is determined mod 7 · 11 · 13 = 1001 by solving the system (2.8.2). As

above, a solution is n = 900. Solving the system of congruences is much faster than counting all 900

soldiers. Hence the name of the Theorem.

The main use of the CRT is to break a problem mod n up into one or more problems mod pk, and

then to reassemble the pieces to solve the original problem.

2.8.5 Example Solve the equation x2 + 1 ≡ 0 (mod 85).

Solution: At first this seems to have nothing to do with the CRT. However any solution must satisfy

85 | (x2 +1). Since 85 = 5 ·17 this would imply 5 | (x2 +1) and 17 | (x2 +1). Conversely if 5 | (x2 +1)

and 17 | (x2 + 1) then 85 | (x2 + 1) by Theorem 1.7.6.

So solving the given equation is the same as solving the system

x2 ≡ −1 (mod 5)

x2 ≡ −1 (mod 17).

The equation x2 ≡ −1 (mod 5) clearly has solutions x ≡ ±2 (mod 5) and x2 ≡ −1 (mod 17) has

solutions x ≡ ±4 (mod 17). There are four choices altogether, and each will reassemble into a

solution mod 85:

x ≡ 2 (mod 5), x ≡ 4 (mod 17)
CRT
=⇒ x ≡ 72 (mod 85).

x ≡ 2 (mod 5), x ≡ −4 (mod 17)
CRT
=⇒ x ≡ 47 (mod 85).

x ≡ −2 (mod 5), x ≡ 4 (mod 17)
CRT
=⇒ x ≡ 38 (mod 85).

x ≡ −2 (mod 5), x ≡ −4 (mod 17)
CRT
=⇒ x ≡ 13 (mod 85).

So x ≡ 13, 38, 47 or 72 (mod 85).

26 Exercise Check the steps labelled CRT in the above calculation.
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27 Exercise Solve the system x ≡ 2 (mod 3), x ≡ 4 (mod 5), x ≡ 6 (mod 7).

28 Exercise Prove that if gcd(a, 561) = 1 then a560 ≡ 1 (mod 561). Hint: factor 561 and use the CRT.

2.9. The order of an element

2.9.1 Definition Let (Z/nZ)× be the set of invertible elements mod n.

So (Z/nZ)× is a set with ϕ(n) elements.

2.9.2 Example

⋆ (Z/12Z)× = {1, 5, 7, 11}.

⋆ If p is prime, (Z/pZ)× = {1, 2, . . . , p − 1}.

Let a ∈ (Z/nZ)×. Since there are only a finite number of elements in (Z/nZ)×, we must eventually

get ar ≡ as (mod n) for some r > s. Since a is invertible mod n we can multiply by a−1 s times and

use theorem 2.6.10 to conclude that ar−s ≡ 1 (mod n). Thus for each a, ak ≡ 1 (mod n) for some

positive integer k.

2.9.3 Definition The order of a ∈ (Z/nZ)× is the least positive integer k such that ak ≡ 1 (mod n).

2.9.4 Example Calculate the order of 2 mod 5.

Solution: The powers of 2 mod 5 are

n 1 2 3 4

2n 2 4 3 1

So the order of 2 is 4.

2.9.5 Example Calculate the order of 2 mod 11.

Solution: The powers of 2 mod 11:

n 1 2 3 4 5 6 7 8 9 10

2n 2 4 8 5 10 9 7 3 6 1

So the order is 10.

2.9.6 Example Calculate the order of each invertible element mod 7.

Solution: Consider the table of powers mod 7:

x x2 x3 x4 x5 x6

1 1 1 1 1 1

2 4 1 2 4 1

3 2 6 4 5 1

4 2 1 4 2 1

5 4 6 2 3 1

6 1 6 1 6 1

Thus 1 has order 1, 6 has order 2, 2 and 4 have order 3, and 3 and 5 have order 6.

x 1 2 3 4 5 6

Order of x 1 3 6 3 6 2
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2.9.7 Example 1 always has order 1, and every other element in (Z/nZ)× has order greater than 1.

Warning: If am ≡ 1 (mod n) this does not imply that a has order m, because m may not be the least

exponent with am ≡ 1. For example, 26 ≡ 1 (mod 7), but the order of 2 is 3, not 6. In fact we have

the following.

2.9.8 Theorem Let a ∈ (Z/nZ)× and let m ∈ N. Then am = 1 iff m is a multiple of the order of a.

Proof Let the order of a be t.

=⇒ Suppose am = 1. Use the Division Algorithm to write m = qt + r with 0 ≤ r < t. Then

1 ≡ am = aqt+r = (at)q · ar ≡ 1q · ar = ar (mod n).

Since 0 ≤ r < t, the definition of order implies that r = 0. Thus t divides m.

⇐= If m = qt then am = (at)q ≡ 1q = 1 (mod n). �

2.9.9 Corollary Let t be the order of a ∈ (Z/nZ)×. Then ar ≡ as iff r ≡ s (mod t).

Proof ar ≡ as iff ar−s ≡ 1 iff t | (r − s) by theorem 2.9.8. �

2.9.10 Corollary Let t be the order of a ∈ (Z/nZ)×. Then 1, a, a2, . . . , at−1 are all distinct mod n.

Proof Suppose 0 ≤ s < r < t. If ar ≡ as then t | (r − s) by the previous corollary. But 0 < r − s < t

and there is no multiple of t in the interval (0, t), contradiction. �

2.10. Primitive Roots

Let t be the order of a ∈ (Z/nZ)×. We know that 1, a, a2, . . . , at−1 are all distinct mod n. Thus if t

should happen to be ϕ(n), every element of (Z/nZ)× will be a power of a.

2.10.1 Definition Let a ∈ (Z/nZ)×. If the order of a is ϕ(n) then a is called a primitive root mod n.

2.10.2 Example

⋆ By example 2.9.4 the order of 2 mod 5 is 4 = ϕ(5), so 2 is a primitive root mod 5. And indeed,

the powers of 2 give all invertible elements mod 5.

⋆ By example 2.9.5 the order of 2 mod 11 is 10 = ϕ(10), so 2 is a primitive root mod 11. The

powers of 2 give all invertible elements mod 11.

⋆ By example 2.9.6 the order of 2 mod 7 is 3 6= ϕ(7) = 6. Only 3 elements are powers of 2 mod 7,

so 2 is not a primitive root mod 7. However the order of 3 mod 7 is 6, so 3 is a primitive root

mod 7.

Primitive roots can be useful in solving equations mod n involving exponents. The idea is to write

everything mod n in terms of powers of the primitive root, and then use Corollary 2.9.9.

2.10.3 Example Solve the equation x7 ≡ 5 (mod 11).

Solution: 2 is a primitive root mod 11. Recall the table of Example 2.9.5:

n 1 2 3 4 5 6 7 8 9 10

2n 2 4 8 5 10 9 7 3 6 1

Thus 5 ≡ 24. Moreover, since every non-zero element of Z/11Z is a power of 2 (and x ≡ 0 is clearly

not a solution), we can write x ≡ 2y for some integer y. The equation becomes

27y ≡ 24 (mod 11).

By Corollary 2.9.9,

7y ≡ 4 (mod 10).
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Warning: the new equation is taken modulo the order of 2, which is 10, not 11. Now 7−1 ≡ 3

(mod 10), so multiplying by 3, y ≡ 3 · 4 ≡ 2 (mod 10). Hence x ≡ 22 ≡ 4 (mod 11).

Check: 47 ≡ 5 (mod 11). �

Unfortunately primitive roots do not always exist.

2.10.4 Example There is no primitive root mod 8.

Proof (Z/8Z)× = {1, 3, 5, 7}. But 12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 (mod 8) so every element of (Z/8Z)× has

order at most 2, and nothing has order ϕ(8) = 4.

The complete story is as follows:

2.10.5 Theorem There exists a primitive root mod n iff n = 2, 4, pk or 2pk where p is an odd prime and

k ∈ N. In particular, there always exist primitive roots mod p.

Proof Omitted. �

2.11. Fermat’s Little Theorem

We know that for each element a in (Z/nZ)× we can find an exponent m with am ≡ 1 (mod n). But

more is true: there is actually a single power that works for all a.

2.11.1 Theorem [Euler] Let n ∈ N. Suppose a ∈ Z and gcd(a, n) = 1. Then

aϕ(n) ≡ 1 (mod n).

Proof Deferred until the algebra section. �

Note that this does not say that the order of every element is ϕ(n). It only implies that the order of

every element divides ϕ(n). Indeed for many n primitive roots do not exist, so no element has order

ϕ(n).

2.11.2 Example Recall the table of powers mod 7:

x x2 x3 x4 x5 x6

1 1 1 1 1 1

2 4 1 2 4 1

3 2 6 4 5 1

4 2 1 4 2 1

5 4 6 2 3 1

6 1 6 1 6 1

We see that a6 ≡ 1 (mod n) for each a, as predicted by Euler’s Theorem.

2.11.3 Corollary [Fermat’s Little Theorem] Let p be prime. Suppose a ∈ Z is not divisible by p. Then

ap−1 ≡ 1 (mod p).

Proof Take n = p in Euler’s Theorem. Then ϕ(n) = p − 1. �

2.11.4 Corollary Let p be prime. Then every integer a satisfies

ap ≡ a (mod p).

Proof If p ∤ a then ap−1 ≡ 1 (mod p), so the result follows on multiplying through by a. If p | a

then a ≡ 0 (mod p) and the result is obvious. �
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2.11.5 Example Find 3100 (mod 101). (Note: 101 is prime.)

Solution: By Fermat’s Little Theorem 3100 ≡ 1 (mod 101). Indeed a100 ≡ 1 (mod 101) for any a 6≡ 0

(mod 101).

29 Exercise Check by repeated squaring that a100 ≡ 1 (mod 101) for a = 2, 3, 4 and 5.

2.11.6 Example Calculate 51000000 (mod 18).

Solution: ϕ(18) = ϕ(2)ϕ(32) = 1 · 3(3 − 1) = 6, so 56 ≡ 1 (mod 18), by Euler’s Theorem. Now

1000000 = 6 · 166666 + 4, so

51000000 ≡ (56)166666 · 54 ≡ 1166666 · 54 ≡ 252 ≡ 72 ≡ 13 (mod 18).

Unfinished Tasks:

(a) To prove Euler’s Theorem, we need to show that the order of any element in (Z/nZ)× divides

ϕ(n), which is the number of elements in the set (Z/nZ)×.

(b) We need to prove: if gcd(m, n) = 1 then ϕ(mn) = ϕ(m)ϕ(n). That is,

|(Z/mnZ)×| = |(Z/mZ)×| · |(Z/nZ)×|.

2.12. Applications: RSA

We discuss an encryption scheme: a way of sending messages so that no unauthorized person can

read them. For the purpose of this discussion, a message will be an integer x in a specified range

0 < x < N . This is not restrictive: any computer file ultimately consists of numbers. These may be

split into blocks of numbers in the given range. In this way we may send text, images, audio, video

etc (jpeg, mpeg, pdf etc).

RSA is a widely used encryption algorithm, developed by Rivest, Shamir and Adleman in 1977. Prior

to RSA cryptosystems relied on a single secret value or “key”. Knowledge of the key was required

both to encrypt and to decrypt messages.

RSA was revolutionary, in that one key is used to encrypt and a different key is used to decrypt.

The key used for encryption is made widely available, and is called the public key . Thus anyone can

encrypt a message. The decryption key is called the private key and is kept secret. Once encrypted,

a message cannot be read without knowing the private key.

In summary: anyone can send you a encrypted message. But only you can read it.

The algorithm is as follows:

2.12.1 Algorithm [RSA]

• Choose large primes p and q (each with at least 100 decimal digits).

• Calculate N = pq and ϕ(N) = (p−1)(q−1). Choose a random integer e with gcd(e, ϕ(N)) =

1.

• Using Euclid’s algorithm, calculate d = e−1 (mod ϕ(N)).

• Publish the public key (N, e). Retain the private key d.

• A message will be an integer x with 0 < x < N .

• Encryption: If someone wants to send you a message x they encrypt it by instead sending

xe (mod N).

• Decryption: To decrypt a received message y, calculate yd (mod N).

2.12.2 Theorem RSA works.
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Proof Since ed ≡ 1 (mod ϕ(N)), we know ed = 1 + tϕ(N) for some integer t. If we receive y ≡ xe,

we calculate

yd ≡ (xe)d ≡ xed ≡ x · (xϕ(N))t (mod N).

Assume that gcd(x, N) = 1. (See exercises for the case gcd(x, N) > 1.) By Euler’s theorem xϕ(N) ≡ 1

(mod N), so yd ≡ x (mod N) and we recover the original message. �

30 Exercise What happens if gcd(x, N) > 1 in RSA? Then we cannot use Euler’s theorem. Check the

following argument.

Instead of using Euler’s theorem, work mod p:

yd ≡ x ·(xϕ(N))t = x · x(p−1)(q−1)t ≡ x ·
[

x(p−1)
](q−1)t

≡

{

0 (mod p), if p | x

x · 1 (mod p), if p ∤ x

where we used Fermat’s Little Theorem at the last step. So yd ≡ x (mod p) in all cases, so p | (yd−x).

Similarly, q | (yd−x). By Theorem 1.7.6, N = pq | (yd−x), so x ≡ y (mod N) for all possible messages

x.

31 Exercise If N = pq with p, q each about 10100, estimate φ(N)/N . This is the probability that a random

x mod N will have gcd(x, N) > 1. Comment on the likelihood of this case arising.

32 Exercise If gcd(x, N) > 1 explain why we can immediately break RSA. (See the next section.) So the

validity of the algorithm is a moot point in this case.

2.12.3 Example We give an example of RSA with small numbers. Choose p = 5, q = 11. Then N = pq =

55, ϕ(N) = 4 · 10 = 40. Let us choose e = 3. Note that gcd(e, ϕ(N)) = gcd(3, 40) = 1. We need to

find d ≡ e−1 (mod 40). By Euclid’s algorithm, d = 27.

The public key is (N, e) = (55, 3). The private key is d = 27. A message will be an integer x with

0 < x < 55.

Example: To send message x = 18, we calculate

x3 ≡ 2 (mod 55).

The encrypted message is 2. To decrypt, use the private key d = 27 and calculate

227 ≡ 18 (mod 55).

33 Exercise Let (N, e) = (323, 11). Suppose you intercept an encrypted message 316. Break the cipher

and decrypt the message. Hint: you will have to factor N .

2.13. The Security of RSA

The public key (N, e) is available to everyone. The cipher is broken if d is found. Since de ≡ 1

(mod ϕ(N)), RSA is immediately broken if ϕ(N) can be calculated from N , since then we can

quickly find d using Euclid’s algorithm.

2.13.1 Theorem Finding ϕ(N) is equivalent to factoring N .

Proof

=⇒ Suppose ϕ(N) is somehow found. Then

ϕ(N) = (p − 1)(q − 1) = pq − (p + q) + 1 = N − (p + q) + 1

34



CHAPTER 2. MODULAR ARITHMETIC 2301 Notes

so

p + q = N − ϕ(N) + 1.

Hence p + q can be found. But

(p − q)2 = (p + q)2 − 4pq = (p + q)2 − 4N

so

p − q =
√

(p + q)2 − 4N.

can also be found. Once we know p− q and p+ q we recover p and q by adding and subtracting these

quantities.

⇐= If we know the factorization of N is N = pq then ϕ(N) = (p − 1)(q − 1) is easily found. �

Thus:

The security of RSA entirely depends on the difficulty of factoring a large integer into its prime

factors.

Of course, the factors can always be found eventually, but even with the best algorithms known, if N

has 400 digits, this would take trillions of times the age of the universe . . .

Nonetheless, RSA is not proved to be secure. No one has proved2 that no rapid algorithm for factoring

exists—this is related to the so called P = NP problem in computer science. Furthermore, it is known

that factoring can be done rapidly if one can build a so called quantum computer. Whether or not

this will be possible any time soon (or ever) is a matter of conjecture . . .

2Also, we prove that finding ϕ(N) is as hard as factoring N . But possibly there is some way to break RSA without

finding ϕ(N)?
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