Show all your work. Justify your solutions. Answers without justification will not receive full marks. Only hand in the problems on page 2.

Practice Problems

Question 1. Show that G is abelian iff $aba^{-1}b^{-1} = 1$ for every $a, b \in G$.

Question 2. Are the following subgroups of $GL_n(\mathbb{R})$? Prove your answer.

(a) The set of $n \times n$ real-valued matrices with positive determinant.

(b) The set of $n \times n$ real-valued matrices with determinant -1.

Question 3. Let \mathscr{M} be the set of monotonic functions $\mathbb{R} \to \mathbb{R}$. That is, $f \in \mathscr{M}$ if either $f(x) \ge f(y) \ \forall x > y$, or $f(x) \le f(y) \ \forall x > y$. Is \mathscr{M} a subgroup of \mathscr{F} under pointwise addition?

Assignment Problems

Question 1.

- (a) Let $G = \mathbb{R}$, $a \diamond b = (a + b)/2$. Is (K, \diamond) a group?
- (b) Define an operation * on $H = \mathbb{R} \setminus \{0\}$ by a * b = |a|b. Is (H, *) a group?
- (c) Define \odot on $K = \mathbb{R} \setminus \{-1\}$ by $a \odot b = ab + a + b$. Is (K, \odot) a group?

Question 2. For n = 10, 11, 12, 13, 14, 15, 16, list the elements of the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$. In each case is the group abelian? Is it cyclic? If so, give a generator.

Question 3. Let G be the collection of 2×2 matrices with entries in $\mathbb{Z}/2\mathbb{Z}$ and with determinant 1:

$$G = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \mid a, b, c, d \in \mathbb{Z}/2\mathbb{Z}, \quad ad - bc \equiv 1 \pmod{2} \right\}.$$

It is easy to check that G is a group.

- (a) List all the elements of G, and calculate their orders.
- (b) Is G cyclic? Is it abelian?

Question 4.

Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 4 & 3 & 2 \end{pmatrix} \in S_5$. These represent symmetries of a regular pentagon, corresponding to rotation by $2\pi/5$ and a "flip", respectively.

- (a) Calculate σ^2 , σ^3 ,... until you reach $\sigma^n = 1$. What is the order of σ ?
- (b) What is the order of τ ?
- (c) Show that $\tau \sigma = \sigma^4 \tau$.
- (d) Give the Cayley table for the dihedral group of symmetries of the regular pentagon D_5 . Express every element in the table in the form $\sigma^m \tau^n$ where $m, n \ge 0$ are as small as possible.